Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Phiếu bài tập: Tỉ số thể tích SVIP
Cho khối tứ diện ABCD có thể tích V và điểm E trên cạnh AB sao cho AE=3EB. Thể tích khối tứ diện EBCD tính theo V là
Cho khối chóp S.ABCD có thể tích bằng 1 và đáy ABCD là hình bình hành. Trên cạnh SC lấy điểm E sao cho SE=2EC. Thể tích V của khối tứ diện SEBD là
Cho tứ diện đều S.ABC. Gọi G1, G2, G3 lần lượt là trọng tâm của các tam giác △SAB, △SBC, △SCA. Tỉ số VS.ABCVS.GG2G3 bằng
Cho hình chóp S.ABCD. Gọi M, N, P, Q theo thứ tự là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của hai khối chóp S.MNPQ và S.ABCD bằng
Cho hình chóp S.ABCD có thể tích V. Gọi M, N lần lượt là trung điểm của SA, MC. Thể tích của khối chóp N.ABCD là
Cho tứ diện ABCD. Gọi B′, C′ lần lượt là trung điểm của AB, AC. Khi đó tỉ số thể tích của khối tứ diện AB′C′D và khối tứ diện ABCD bằng
Cho hình chóp S.ABC có A′ và B′ lần lượt là trung điểm của SA và SB. Biết thể tích khối chóp S.ABC bằng 24. Thể tích của khối chóp S.A′B′C là
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên tạo với đáy một góc 60∘. Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD cắt SB tại E và cắt SD tại F. Thể tích khối chóp S.AEMF là
Cho khối chóp tứ giác đều S.ABCD. Mặt phẳng (α) đi qua A, B và trung điểm M của SC. Tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=AC=a, SC⊥(ABC) và SC=a. Mặt phẳng qua C, vuông góc với SB cắt SA, SB lần lượt tại E và F. Thể tích khối chóp S.CEF là