Bài học cùng chủ đề
- Dấu của tam thức bậc hai
- Tam thức bậc hai
- Định lí về dấu của tam thức bậc hai
- Cách xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng định lí về dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng đồ thị hàm số
- Tam thức bậc hai và định lí về dấu của tam thức bậc hai
- Xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai
- Bài toán sử dụng định lí về dấu có chứa tham số
- Phiếu bài tập: Dấu của tam thức bậc hai
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Tam thức f(x)=x2−(m+2)x+8m+1 không âm với mọi x khi
Tất cả các giá trị của tham số m để bất phương trình −x2+(2m−1)x+m<0 có tập nghiệm S=R là
Tam thức bậc hai f(x)=2x2+2x+5 nhận giá trị dương khi và chỉ khi
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=(m+2)x2+2(m+2)x+m+3 không âm với mọi x khi
Tam thức bậc hai f(x)=x2+(1−3)x−8−53 luôn
Phương trình 2x2−(m2−m+1)x+2m2−3m−5=0 có hai nghiệm phân biệt trái dấu khi và chỉ khi
Bất phương trình −2x2+3x−7≥0 có tập nghiệm là
Tất cả các giá trị thực của tham số m để bất phương trình −2x2+2(m−2)x+m−2<0 có nghiệm là
Bất phương trình x2−mx−m≥0 có nghiệm đúng với mọi x khi và chỉ khi
Phương trình x2−(m+1)x+1=0 vô nghiệm khi và chỉ khi
Hàm số y=(m+1)x2−2(m+1)x+4 có tập xác định là D=R khi
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi
Giải bất phương trình x(x+5)≤2(x2+2).
Tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2+2(m−2)x−1≤0 có tập nghiệm là R là