Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Kiểm tra cuối chương V SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian Oxyz, vectơ n=(1;−1;−3) là một vectơ pháp tuyến của mặt phẳng nào sau đây?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y+z+4=0. Khoảng cách d từ điểm M(1;2;1) đến mặt phẳng (P) là
Cho M(−3;−1;3) và N(−1;0;2) và mặt phẳng (P):x+2y+z+4=0. Góc giữa đường thẳng MN và mặt phẳng (P) bằng bao nhiêu độ?
Phương trình nào sau đây là phương trình mặt cầu?
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng song song d1:1x−1=2y+1=3z−2 và d2:3x−4=6y−1=9z−3. Mặt phẳng (P) chứa hai đường thẳng d1 và d2 có phương trình là
Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d1,d2 lần lượt có phương trình d1:2x−2=1y−2=3z−3, d2:2x−1=−1y−2=4z−1. Phương trình mặt phẳng (α) cách đều hai đường thẳng d1,d2 là
Trong một khung lưới ô vuông gồm các hình lập phương, xét các đường thẳng đi qua hai nút lưới (mỗi nút lưới là đỉnh của hình lập phương), người ta đưa ra một cách kiểm tra độ lệch về phương của hai đường thẳng bằng cách gắn hệ tọa độ Oxyz vào khung lưới ô vuông và tìm vectơ chỉ phương của hai đường thẳng đó. Giả sử, đường thẳng a đi qua hai nút lưới M(1;1;2) và N(0;3;0), đường thẳng b đi qua hai nút lưới P(1;0;3) và Q(3;3;9). Sau khi làm tròn đến hàng đơn vị của độ thì góc giữa hai đường thẳng a và b bằng n∘ (n là số tự nhiên). Giá trị của n bằng bao nhiêu?
Trong không gian Oxyz, cho đường thẳng d:1x−1=−1y=1z−2 và mặt phẳng (P):2x−y−2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình
Trong không gian với hệ trục Oxyz, cho điểm I(3;4;2). Phương trình mặt cầu tâm I và tiếp xúc với trục Oz là
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I∈(Oxy) và đi qua 3 điểm A(1;0;0);B(0;1;0);C(0;0;3).
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;1;3),B(−1;3;2),C(−1;2;3).
a) Ba điểm A,B,C không thẳng hàng. |
|
b) AB=3KC với K(2;−2;2). |
|
c) Phương trình mặt phẳng (ABC) là x+2y+2z+9=0. |
|
d) Khoảng cách từ M(−4;4;0) đến (ABC) lớn hơn khoảng cách từ N(4;2;1) đến (ABC). |
|
Trong hệ trục tọa độ cho các điểm M(0;2;0),N(0;0;−1),P(−1;0;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trọng tâm tam giác MNP là điểm G(0;2;1). |
|
b) Điểm M thuộc mặt phẳng (α):2x+y−2z=0. |
|
c) Diện tích tam giác OMN=1. |
|
d) Tồn tại 2 mặt phẳng (α) qua hai điểm M, N và có khoảng cách từ P đến (α) bằng 2. |
|
Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(−1;2;5). Biết trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 4 km.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình mặt cầu thể hiện phạm vi phủ sóng tối đa của trạm thu phát sóng là x2+y2+z2+2x−4y−10z−14=0. |
|
b) Điểm A(−1;2;8) nằm ngoài vùng phủ sóng của trạm thu phát sóng điện thoại di động. |
|
c) Một người đứng ở vị trí có tọa độ điểm B(2;0;−5) sẽ không thu được sóng điện thoại ở trạm phát sóng này. |
|
d) Nếu hai người cùng bắt được sóng của trạm thu phát sóng điện thoại đó thì khoảng cách tối đa giữa hai người đó là 8 km. |
|
Trong không gian Oxyz, cho ba điểm A(2;0;0),B(0;1;0),C(0;0;−3). Gọi H là trực tâm tam giác ABC. Độ dài OH có dạng ba (là phân số tối giản có mẫu dương). Tính T=a+b.
Trả lời:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:⎩⎨⎧x=1+ty=−tz=1+2t và hai mặt phẳng (α):x+y−z−8=0, (β):x+y−z+2=0. Gọi Δ1⊂(α), Δ2⊂(β) là hai đường thẳng cùng vuông góc với d lần lượt tại A và B. Khoảng cách từ gốc tọa độ O đến mặt phẳng (P) chứa Δ1 và Δ2 bằng bao nhiêu? (làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Trong không gian Oxyz, cho đường thẳng d:1x+1=2y=1z−2, mặt phẳng (P):x−2y−2z−7=0 và điểm A(1;1;3). Đường thẳng Δ đi qua M cắt đường thẳng d và mặt phẳng (P) lần lượt tại M,N sao cho M là trung điểm của AN, biết đường thẳng Δ có một vectơ chỉ phương là u(a;b;6). Khi đó giá trị biểu thức T=14a−5b bằng bao nhiêu?
Trả lời: .
Trả lời: .