Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số nào dưới đây là hàm số chẵn?
Tập giá trị của hàm số y=sin2x là
Phương trình lượng giác cos3x=cos15π có nghiệm là
Nghiệm của phương trình cot32x=3 là
Cho cấp số cộng (un) có u1=2, u2=6. Công sai của cấp số cộng bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Giá trị lớn nhất của hàm số y=3sinx là
Nghiệm của phương trình cosx=21 là
Phát biểu nào sau đây sai về hàm số y=cos(x−2π)?
Phương trình 2sin2x−3sinx+1=0 có bao nhiêu nghiệm thuộc [0;π]?
Cho cấp số nhân (un) thỏa mãn {u1+u2+u3=13u4−u1=26. Tổng 8 số hạng đầu của cấp số nhân (un) bằng
Đường cong trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau đây?
Cho góc lượng giác x, sao cho cosx=−135 với 180∘<x<270∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sinx<0. |
|
b) tanx=512. |
|
c) cotx=125. |
|
d) sinx−cosx=−1312. |
|
Chiều cao so với mực nước biển trung bình tại thời điểm t của mỗi cơn sóng được cho bởi hàm số h(t)=75sin(8πt), trong đó h(t) được tính bằng centimét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Chiều cao của sóng tại các thời điểm 5 giây bằng 69,3 cm. |
|
b) Chiều cao của sóng tại các thời điểm 20 giây bằng 75 cm. |
|
c) Trong 30 giây đầu tiên, thời điểm để sóng đạt chiều cao lớn nhất là 6 giây. |
|
d) Trong 30 giây đầu tiên, có 3 thời điểm để sóng đạt chiều cao lớn nhất. |
|
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ ba và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Gọi un (ghế) là tổng số ghế ở hàng thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=18. |
|
b) Dãy số (un) là cấp số cộng có công sai d=2. |
|
c) Số ghế ở hàng thứ 20 nhỏ hơn 54. |
|
d) Tổng số ghế trong nhà hát nhiều hơn 1000. |
|
Cho góc lượng giác x, sao cho tanx=31 với π<x<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosx<0. |
|
b) cosx=−1010. |
|
c) sinx=−1010. |
|
d) sinx+cosx=−510. |
|
Một thiết bị trễ kĩ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần f1(t)=5sint và phát lại được nốt thuần f2(t)=5cost thì âm kết hợp là f(t) =f1(t)+f2(t), trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng f(t)=k sin(t+φ), tức là âm kết hợp là một sóng âm hình sin. Xác định biên độ âm k của sóng âm. (ghi kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Cho hình vuông A1B1C1D1 có cạnh bằng 4. Với mọi số nguyên dương n≥2, gọi An,Bn,Cn,Dn lần lượt là trung điểm của các cạnh An−1Bn−1,Bn−1Cn−1,Cn−1Dn−1, Dn−1An−1. Gọi Sn là diện tích của tứ giác AnBnCnDn. Tính S91.
Trả lời:
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành 200 đô la, và trong mỗi tuần tiếp theo, cô đã thêm 16 đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá 1000 đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hoà cho bởi công thức x(t)=Acos(ωt+φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t,A là biên độ dao động (A>0) và φ∈[−π;π] là pha ban đầu của dao động. Xét hai dao động điều hoà có phương trình: x1(t)=3⋅cos(6πt+6π) (cm) và x2(t)=3⋅cos(6πt+4π) (cm). Từ dao động tổng hợp x(t)=x1(t)+x2(t), sử dụng công thức biến đổi tổng thành tích ta tìm được pha ban đầu của dao động tổng hợp này bằng nmπ với nm là phân số tối giản có mẫu dương. Tính n−m.
Trả lời: