Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào là mệnh đề?
Mệnh đề phủ định của mệnh đề "Phương trình x2+2x+5=0 vô nghiệm" là
Cho hai tập hợp A và B được minh họa bằng biểu đồ Ven như hình vẽ:
Khi đó tập hợp C=A∪B là
Cặp số nào dưới đây không là nghiệm của bất phương trình −2x+y≥3?
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây sai?
Cho tam giác ABC có góc B=60∘, C=45∘, cạnh AB=4. Độ dài cạnh AC bằng
Cho tam giác ABC có AB=5, AC=2, C=45∘. Độ dài cạnh BC là
Cho A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật và C là tập hợp các hình vuông. Khẳng định nào sau đây đúng?
Cho hệ ⎩⎨⎧2x+3y<5(1)x+23y<5(2). Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì
Cho tanα−cotα=3. Giá trị của biểu thức A=tan2α+cot2α là
Cho biết sin3α=53. Giá trị của P=3sin23α+5cos23α bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại I và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi x,y lần lượt là số sản phẩm loại I, loại II mà đội làm được trong thời gian cho phép.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng thời gian (giờ) làm xong sản phẩm loại I là 2x, tổng thời gian làm xong sản phẩm loại II là 3y. |
|
b) 3x+2y<18. |
|
c) Khi số sản phẩm loại I là 3, loại II là 4 thì thời gian đội đó làm nằm trong thời gian cho phép. |
|
d) Khi số sản phẩm loại I là 2, loại II là 6 thì thời gian đội đó làm vượt quá thời gian cho phép. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=32 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cos2α=95. |
|
c) cosα=−35. |
|
d) 2sinα+cosαsinα+5cosα=4+57. |
|
Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lí, 14 học sinh giỏi cả môn Toán và Lí và có 6 học sinh không giỏi môn nào cả. Lớp học đó có bao nhiêu học sinh?
Trả lời:
Cho tam giác ABC có A(0;3);B(−1;2);C(2;1). Có bao nhiêu giá trị nguyên của tham số m để điểm M(m;22m−1) nằm bên trong tam giác ABC?
Trả lời:
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
i) Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
ii) Một người mỗi ngày cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B.
iii) Do tác động phối hợp của hai loại vitamin, mỗi ngày số đơn vị vitamin B phải nhiều hơn 21 số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin.
Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng x đơn vị vitamin A và y đơn vị vitamin B thỏa mãn các điều kiện i), ii), iii) thì số tiền phải trả ít nhất. Tính x+y.
Trả lời:
Một tháp viễn thông cao 42 m được dựng thẳng đứng trên một sườn dốc 34∘ so với phương ngang. Từ đỉnh tháp người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 33 m như hình vẽ.
Tính chiều dài của sợi dây cáp đó. (Làm tròn kết quả đến hàng phần mười của đơn vị mét)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Biểu thức F=y−x đạt giá trị nhỏ nhất với điều kiện ⎩⎨⎧−2x+y≤−2x−2y≤2x+y≤5x≥0 tại điểm S(x;y) với x và y là các số nguyên. Tính x2+y2.
Trả lời: