Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Câu nào sau đây không phải là mệnh đề?
Mệnh đề phủ định của "Bất phương trình x−2<0 vô nghiệm" là
Cho hai tập hợp A và B được minh họa bằng biểu đồ Ven như hình vẽ:
Khi đó tập hợp C=A∪B là
Cặp số nào sau đây là nghiệm của bất phương trình 2x−3y≤6?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Giá trị cos45∘+sin45∘ bằng
Cho tam giác ABC với BC=a,AC=b,AB=c, bán kính đường tròn ngoại tiếp R. Khẳng định nào sau đây đúng?
Cho ΔABC có b=6,c=8,A=60∘. Độ dài cạnh a là
Cho các tập hợp A={x∈N(4−x2)(x2−5x+4)=0}; B={x∈Zx là ước của 4}. Tập hợp A∩B là
Phần không tô màu trong hình vẽ dưới đây (không tính biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Cho sinx+cosx=m. Giá trị của M=sinx.cosx tính theo m là
Cho biết sin3α=53. Giá trị của P=3sin23α+5cos23α bằng
Cho ba tập hợp CRM=(−∞;3),CRN=(−∞;−3)∪(3;+∞) và CRP=(−2;3].
(Nhấp vào ô màu vàng để chọn đúng / sai)a) N=(−3;3). |
|
b) P=(−∞;−2]∪(3;+∞). |
|
c) M∩N=∅. |
|
d) (M∩N)∪P=(−∞;−2]∪[3;+∞). |
|
Một công ty viễn thông tính phí 1 000 đồng mỗi phút gọi nội mạng và 2 000 đồng mỗi phút gọi ngoại mạng. Gọi x và y lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền Bình phải trả cho cuộc gọi nội mạng mỗi tháng là x (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là 2y (nghìn đồng) và x∈N,y∈N. |
|
b) x+2y<100. |
|
c) Nếu 50 và 20 lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng thì số tiền phải trả cho tổng đài thấp hơn 100 nghìn đồng. |
|
d) Nếu 50 và 25 lần lượt là số phút gọi nội mạng, ngoại mạng trong một tháng thì số tiền phải trả cho tổng đài vượt quá mục tiêu của Bình. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=31.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cos2α=98. |
|
b) A=sin2α+3cos2α=935. |
|
c) B=5sin2α−cos2α=−31. |
|
d) C=sin2α+3cos2α+cos2α−7sin2α=2. |
|
Trong đợt khảo sát nghề, giáo viên chủ nhiệm lớp 10D đưa ra ba nhóm ngành cho học sinh lựa chọn, đó là: Giáo dục, Y tế, Công nghệ thông tin. Học sinh có thể chọn từ một đến ba nhóm ngành nêu trên hoặc không chọn nhóm ngành nào trong ba nhóm ngành trên. Giáo viên chủ nhiệm thống kê theo từng nhóm ngành và được kết quả: có 6 học sinh chọn nhóm ngành Giáo dục, 9 học sinh chọn nhóm ngành Y tế, 10 học sinh chọn nhóm ngành Công nghệ thông tin, 22 học sinh không chọn nhóm ngành nào trong ba nhóm trên. Nếu thống kê số lượng học sinh chọn theo từng hai nhóm ngành được kết quả: có 3 học sinh chọn hai nhóm ngành Giáo dục và Y tế, 2 học sinh chọn hai nhóm ngành Y tế và Công nghệ thông tin, 3 học sinh chọn hai nhóm ngành Giáo dục và Công nghệ thông tin. Có bao nhiêu học sinh chọn cả ba nhóm ngành nêu trên biết lớp 10D có 40 học sinh?
Trả lời:
Cho tam giác ABC có A(0;3);B(−1;2);C(2;1). Có bao nhiêu giá trị nguyên của tham số m để điểm M(m;22m−1) nằm bên trong tam giác ABC?
Trả lời:
Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II:
▪️ Mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, thu lời (lãi) được 40 nghìn đồng.
▪️ Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, thu lời được 30 nghìn đồng.
Xưởng có 200 kg nguyên liệu và 1200 giờ làm việc tối đa. Để có mức tiền lãi cao nhất, xưởng cần sản xuất a sản phẩm loại I và b sản phẩm loại II. Tính a+b.
Trả lời:
Một tháp viễn thông cao 42 m được dựng thẳng đứng trên một sườn dốc 34∘ so với phương ngang. Từ đỉnh tháp người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 33 m như hình vẽ.
Tính chiều dài của sợi dây cáp đó. (Làm tròn kết quả đến hàng phần mười của đơn vị mét)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=nm, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F(x;y)=x−y với điều kiện ⎩⎨⎧x≥0y≥0x+y−3≤0.
Trả lời: