Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của "5+4=10" là
Tập hợp P={x∈R−1<2x+1≤11} được viết lại dưới dạng đoạn, khoảng, nửa khoảng là
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x+y−3>0?
Cho tam giác ABC, trọng tâm G. Kết luận nào sau đây đúng?
Giá trị của biểu thức A=sin215∘+sin275∘+cos120∘ là
Cho tam giác ABC có AB=3, BC=5 và độ dài đường trung tuyến BM=13.
Độ dài AC bằng
Cho A=(−∞;−2]; B=[3;+∞) và C=(0;4). Khi đó tập (A∪B)∩C là
Cho tập hợp A={1;2;3;4;5}. Số tập hợp X thỏa mãn A\X={1;3;5} và X\A={6;7} là
Miền hình phẳng (H) được giới hạn bởi ⎩⎨⎧y≥0x+y≤3y≤x+1 là phần tô màu ở hình nào dưới đây?
Phần tô màu (không bao gồm đường thẳng d) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Lớp 10A có tất cả 40 học sinh trong đó có 13 học sinh chỉ thích đá bóng, 18 học sinh chỉ thích chơi cầu lông và số học sinh còn lại thích chơi cả hai môn thể thao nói trên.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Có 9 học sinh thích chơi cả hai môn cầu lông và bóng đá. |
|
b) Có 22 học sinh thích bóng đá. |
|
c) Có 26 học sinh thích cầu lông. |
|
d) Có 21 học sinh chỉ thích chơi một trong hai môn cầu lông và bóng đá. |
|
Một công ty viễn thông tính phí 1 000 đồng mỗi phút gọi nội mạng và 2 000 đồng mỗi phút gọi ngoại mạng. Gọi x và y lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền Bình phải trả cho cuộc gọi nội mạng mỗi tháng là x (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là 2y (nghìn đồng) và x∈N,y∈N. |
|
b) x+2y<100. |
|
c) Nếu 50 và 20 lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng thì số tiền phải trả cho tổng đài thấp hơn 100 nghìn đồng. |
|
d) Nếu 50 và 25 lần lượt là số phút gọi nội mạng, ngoại mạng trong một tháng thì số tiền phải trả cho tổng đài vượt quá mục tiêu của Bình. |
|
Cho AB=−CD.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AB và CD cùng hướng. |
|
b) AB và CD cùng độ dài. |
|
c) ABCD là hình bình hành. |
|
d) AB+DC=0. |
|
Cho sinα=1312, với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cosα=1−sin2α. |
|
c) tanα=−512. |
|
d) cotα=−125. |
|
Cho các tập hợp khác rỗng A=[2m+1;m+4] và B=(−∞;−1]∪(5;+∞). Có tất cả bao nhiêu giá trị nguyên dương của m để A∩B=∅?
Trả lời:
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Tìm các nghiệm (x;y) của bất phương trình 2x+3y−1≤0. Trong đó x,y là các số nguyên dương. Tính x+y.
Trả lời:
Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:
Nhóm | Số máy trong mỗi nhóm | Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm | |
Loại I | Loại II | ||
A | 10 | 2 | 2 |
B | 4 | 0 | 2 |
C | 12 | 2 | 4 |
Một đơn vị sản phẩm I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Phương án sản xuất x sản phẩm loại I và y sản phẩm loại II sẽ cho lãi cao nhất. Tính x+y.
Trả lời:
Tìm giá trị nhỏ nhất của biết thức F(x;y)=x−2y với điều kiện ⎩⎨⎧0≤y≤5x≥0x+y−2≥0x−y−2≤0.
Trả lời:
Một chiếc tàu khởi hành từ bến cảng đi về hướng bắc 15 km, sau đó bẻ lái một góc 20∘ về hướng tây bắc và đi thêm 12 km nữa.
Tính khoảng cách từ tàu đến bến cảng. (Làm tròn kết quả đến hàng đơn vị của ki-lô-mét)
Trả lời: