Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì II (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề nào sau đây sai?
Nếu ∫f(x)dx=e2x+x+C thì f(x) bằng
Họ nguyên hàm của hàm số f(x)=3x2+2sinx là
Xét f(x) là một hàm số liên tục trên đoạn [a;b], (với a<b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b]. Mệnh đề nào dưới đây đúng?
Trong không gian Oxyz, đường thẳng d:⎩⎨⎧x=−1+ty=2−3tz=t với t∈R và điểm A(2;3;1). Mặt phẳng (P) đi qua điểm A vuông góc với đường thẳng d có phương trình là
Trong không gian Oxyz, cho hai mặt phẳng (P):x−2y−2z+1=0 và (Q):x−2y−2z+7=0. Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng
Trong không gian Oxyz, cho mặt phẳng (P): 3x+2y−z−1=0. Vectơ nào dưới đây không phải một vectơ pháp tuyến của mặt phẳng (P)?
Cho hàm số f(x)=(2x−3)3 có một nguyên hàm là F(x) thỏa mãn F(2)=89. Giá trị F(21) bằng
Cho 6π∫4πcos4xcosxdx=a2+cb với a,b,c là các số nguyên, c<0 và cb tối giản. Tổng a+b+c bằng
Giá trị của tích phân I=0∫1x+1x−3dx bằng
Trong không gian với hệ tọa độ Oxyz, gọi (P) là mặt phẳng chứa đường thẳng (d):1x−2=2y−1=−1z và cắt các trục Ox,Oy lần lượt tại A và B sao cho đường thẳng AB vuông góc với (d). Phương trình của mặt phẳng (P) là
Trong không gian hệ tọa độ Oxyz, cho ba điểm A(1;−1;−1), B(1;0;4), C(0;−2;−1). Phương trình mặt phẳng (α) qua A và vuông góc với đường thẳng BC là
Cho (H) là hình phẳng giới hạn bởi 41 cung tròn có bán kính R=2, đường cong y=4−x và trục hoành, x=3.
a) Công thức tính diện tích hình quạt trên hình theo tích phân là −2∫04−x2dx |
|
b) Diện tích hình phẳng (H) gần bằng 6,5. |
|
c) Thể tích nửa khối cầu bán kính R=2 là 16π. |
|
d) Thể tích V khối tạo thành khi cho (H) quay quanh Ox là 677π. |
|
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;3;−1),B(4;1;0),C(4;7;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vectơ n=[AB,AC] là một vectơ pháp tuyến của mặt phẳng ABC. |
|
b) Độ dài các cạnh tam giác ABC lần lượt là AB=3,AC=6,BC=4. |
|
c) Tọa độ chân đường phân giác của BAC xuống BC là E(4;3;1). |
|
d) Mặt phẳng đi qua điểm A, tâm đường tròn nội tiếp tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình (P):x−4y−z−9=0. |
|
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t)=4t m/s, trong đó thời gian t tính bằng giây. Sau khi chuyển động được 10 giây thì ô tô gặp chuớng ngại vật và người tài xế phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với vận tốc v2(t) và gia tốc là a=−3 m/s2 cho đến khi dừng hẳn.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường ô tô chuyển động nhanh dần đều là 200 m. |
|
b) Vận tốc của ô tô tại thời điểm người tài xế phanh gấp là 40 m/s. |
|
c) Thời gian từ lúc ô tô giảm tốc độ cho đến khi dừng hẳn là 40 giây. |
|
d) Tổng quãng đường ô tô chuyển động từ lúc xuất phát đến khi dừng hẳn là khoảng 650,7 m. |
|
Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h′(t)=3at2+bt (m3/s) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 150 m3. Sau 10 giây thì thể tích nước trong bể là 1100 m3. Thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu m3? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu là 25 m/s, gia tốc trọng trường là 9,8 m/s2. Quãng đường viên đạn đi được từ lúc bắn cho đến khi chạm đất là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(2;9) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s (km) mà vật di chuyển được trong 3 giờ đó.
Trả lời:
Trong không gian Oxyz, cho điểm A(1011;1;0) và mặt phẳng (Q):x−y−7z+2=0. Biết (P) // (Q) và (P) có dạng x+by+cz+m=0. Tính ∣T∣, với T tổng các giá trị của m sao cho d(A;(P))=1.
Trả lời:
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2 m được lát gạch màu trắng và trang trí bởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ trục tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y=x2 và y=ax3+bx.
Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm 31 diện tích mặt sàn.
Trả lời:
Trong không gian Oxyz, cho mặt phẳng (α):ax−y+2z+b=0 đi qua giao tuyến của hai mặt phẳng (P):x−y−z+1=0 và (Q):x+2y+z−1=0. Tính a+4b.
Trả lời: