Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Tập nghiệm của phương trình tanx=3 là
Cho dãy số (un) với un=n2a−1. Khẳng định nào sau đây đúng?
Dãy số (un) nào sau đây là cấp số cộng?
Cấp số nhân (un) có số hạng tổng quát là un=53.2n−1,n∈N∗. Số hạng đầu tiên và công bội của cấp số nhân đó là
Cho cấp số nhân (un) có u1=2 và công bội q=−3. Tổng 4 số hạng đầu của cấp số nhân (un) bằng
Hàm số nào dưới đây là hàm số lẻ?
Xét hàm số y=sinx trên khoảng (−π;π). Đồ thị của hàm số có hướng đi xuống trên khoảng
Phương trình sin(32x−3π)=0 có nghiệm là
Cho mẫu số liệu ghép nhóm về chiều cao của 20 học sinh lớp lá như sau:
Chiều cao (cm) | [70;79) | [79;88) | [88;97) | [97;106) | [106;115) |
Số học sinh | 1 | 2 | 4 | 10 | 3 |
Trung vị của mẫu số liệu ghép nhóm này là
Nghiệm của phương trình cosx+sinx=1 là
Cho dãy số (un) là một cấp số cộng có u1=3 và công sai d=4. Biết tổng của n số hạng đầu tiên của dãy số (un) là Sn=253. Giá trị n bằng
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u2=12 và u4=192. Tổng của 9 số hạng đầu tiên của cấp số nhân đó là
Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:
Điểm |
[6;7) |
[7;8) |
[8;9) |
[9;10] |
Số học sinh |
8 |
7 |
10 |
5 |
a) Mẫu số liệu đã cho là mẫu số liệu ghép nhóm. |
|
b) Cỡ mẫu của mẫu số liệu là 30. |
|
c) Điểm trung bình của các học sinh là 7,9. |
|
d) Mốt của mẫu số liệu là 10. |
|
Cho phương trình lượng giác sin(3x+3π)=−23.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=−9π+k32πx=3π+k32π,(k∈Z). |
|
b) Phương trình có nghiệm âm lớn nhất bằng −92π. |
|
c) Trên khoảng (0;2π) phương trình đã cho có 3 nghiệm. |
|
d) Tổng các nghiệm của phương trình trong khoảng (0;2π) bằng 97π. |
|
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ ba và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Gọi un (ghế) là tổng số ghế ở hàng thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=18. |
|
b) Dãy số (un) là cấp số cộng có công sai d=2. |
|
c) Số ghế ở hàng thứ 20 nhỏ hơn 54. |
|
d) Tổng số ghế trong nhà hát nhiều hơn 1000. |
|
Vào năm con gái được 4 tuổi, một người cha chuẩn bị gửi tiết kiệm đầu mỗi năm một số tiền x, (x∈N) để đến năm con gái 18 tuổi sẽ có được 200 triệu cho con gái đi học đại học. Hiện tại lãi suất tiền gửi hàng năm là 4,8%/năm. Giả sử lãi suất này được giữ ổn định.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thu về sau 14 năm là một cấp số nhân có q=(1+4,8%). |
|
b) Số tiền tiết kiệm được sau năm thứ nhất là x+x.(1+4,8%). |
|
c) x=9. |
|
d) Đến năm con gái được 10 tuổi, người cha dự định khi con gái được 18 tuổi sẽ mua thêm cho con gái một chiếc xe máy trị giá 50 triệu đồng. Do đó, kể từ thời điểm đầu năm con gái được 10 tuổi người này cần gửi tiết kiệm y triệu đồng đến khi con gái 18 tuổi, (y∈N). Giá trị nhỏ nhất của y=15. |
|
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút.
Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? (làm tròn kết quả tới hàng phần mười)
Trả lời:
Vào đầu mỗi tháng, ông An đều gửi vào ngân hàng số tiền cố định 30 triệu đồng theo hình thức lãi kép với lãi suất 0,6% /tháng. Tính số tiền (đơn vị triệu đồng) ông An có được sau tháng sau tháng thứ hai. (làm tròn kết quả tới hàng phần mười)
Trả lời:
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành 200 đô la, và trong mỗi tuần tiếp theo, cô đã thêm 16 đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá 1000 đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời: