Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian cho ba điểm M,N,P phân biệt. Tổng PM+MN là
Trong không gian Oxyz, cho điểm M thỏa mãn hệ thức OM=2i+k. Tọa độ của điểm M là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Cho hàm số y=x−1x+1. Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Đồ thị hàm số y=x−23x−5 có đường tiệm cận đứng là đường thẳng nào dưới đây?
Đường cong ở hình dưới là đồ thị của hàm số nào?
Phương trình tiếp tuyến của đồ thị hàm số y=x−12x+1 tại điểm có hoành độ x=2 là
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x)=x+12x−1 trên đoạn [0;3]. Giá trị M−m bằng
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hàm số y=f(x) có đồ thị của hàm số y=f′(x) như hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Cho hình hộp ABCD.A′B′C′D′. Gọi I và K lần lượt là tâm của hình bình hành ABB′A′ và BCC′B′.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) IK=21AC. |
|
b) Bốn điểm I,K,C,A đồng phẳng. |
|
c) A′C′=2IB+2IC′. |
|
d) BD+2IK=2BC. |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
a) Hàm số y=f(x) có giá trị cực tiểu bằng 1. |
|
b) Đồ thị hàm số y=f(x) có điểm cực tiểu là (1;−1). |
|
c) Hàm số y=f(x) đạt cực đại tại x=0. |
|
d) Hàm số y=f(x) có đúng một cực trị. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hàm số y=f(x)=(4−x2)2+1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đã cho có 3 điểm cực trị. |
|
b) Tập giá trị của hàm số là R. |
|
c) Trên đoạn [−2;1], giá trị nhỏ nhất của hàm số là 1. |
|
d) Trên khoảng [0;+∞), giá trị lớn nhất của hàm số là 17. |
|
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Cho hình hộp ABCD.A′B′C′D′. Một đường thẳng Δ cắt các đường thẳng AA′,BC,C′D′ lần lượt tại M,N,P sao cho NM=2NP. Tính MA′MA.
Trả lời:
Một phần lát cắt của dãy núi có độ cao tính bằng mét được mô tả bởi hàm số y=h(x)=−13200001x3+35209x2−4481x+840 với 0≤x≤2000. Biết đỉnh của lát cắt dãy núi nằm ở độ cao h (m) thuộc đoạn [1000;2000]. Tính h. (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một xí nghiệp A chuyên cung cấp sản phẩm S cho nhà phân phối B. Hai bên thỏa thuận rằng, nếu đầu tháng B đặt hàng x tạ sản phẩm S thì giá bán mỗi tạ sản phẩm S là P(x)=6−0,0005x2 (triệu đồng) (x≤40). Chi phí A phải bỏ ra cho x tạ sản phẩm S trong một tháng là C(x)=10+3,5x (triệu đồng) và mỗi sản phẩm bán ra phải chịu thêm mức thuế là 1 triệu đồng. Trong một tháng B cần đặt hàng bao nhiêu tạ sản phẩm S thì A có được lợi nhuận lớn nhất, kết quả làm tròn đến hàng phần mười.
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau:
Phương trình f′[5−3f(x)]=0 có bao nhiêu nghiệm thực?
Trả lời: