Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, toạ độ của vectơ a=2i+3k là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Cho hàm số y=x−13x+1. Mệnh đề nào dưới đây đúng?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−1;2] là
Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=x+12x−1 có phương trình lần lượt là
Cho hàm số y=f(x)=x3+ax2+bx+4 có đồ thị như hình vẽ.
Hàm số y=f(x) là hàm số nào dưới đây?
Gọi (C) là đồ thị của hàm số y=2−xx2. Phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=34x+1 là
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Giá trị lớn nhất của hàm số y=f(x)=x3−3x2−9x+10 trên [−2;2] là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hàm số y=f(x) có đồ thị của hàm số y=f′(x) như hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Cho hình bình hành ABCD có E là trung điểm của AD, F là trung điểm của BC.
a) BD=BA+BC |
|
b) BD=EF |
|
c) DE=DB−DF |
|
d) DB=CB+AB |
|
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ:
a) Hàm số y=f(x) nghịch biến trên khoảng (−∞;−1). |
|
b) Hàm số y=f(x) đồng biến trên khoảng (−1;+∞). |
|
c) Hàm số y=f(x) có hai điểm cực trị. |
|
d) Hàm số y=f(x) đạt cực tiểu tại điểm x=2. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=f(x)=(4−x2)2+1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đã cho có 3 điểm cực trị. |
|
b) Tập giá trị của hàm số là R. |
|
c) Trên đoạn [−2;1], giá trị nhỏ nhất của hàm số là 1. |
|
d) Trên khoảng [0;+∞), giá trị lớn nhất của hàm số là 17. |
|
Nếu một vật có khối lượng m (kg) thì lực hấp dẫn P (N) của Trái Đất tác dụng lên vật được xác định theo công thức: P=m.g, trong đó g là gia tốc rơi tự do có độ lớn g=9,8 m/s2. Một con khỉ có cân nặng 5 kg đang biểu diễn xiếc. Nó nắm tay vào dây để treo mình đứng yên như hình vẽ.
Khi dây ở vị trí cân bằng, tính độ lớn của lực căng dây T1, đơn vị N (làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là điểm bất kì trong không gian. Tìm giá trị k trong đẳng thức vectơ PI=k(PA+PB+PC+PD). (Ghi kết quả dưới dạng số thập phân)
Trả lời:
Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t)=t3−6t2+9t với t≥0. Khi đó x′(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t);v′(t) là gia tốc chuyển động của chất điểm tại thời điểm t. Vận tốc của chất điểm giảm dần tới thời điểm ta lại bắt đầu tăng dần. Tính ta.
Trả lời:
Một doanh nghiệp dự định sản xuất không quá 400 sản phẩm. Nếu doanh nghiệp sản xuất x sản phẩm (1≤x≤400) thì doanh thu nhận được khi bán hết số sản phẩm đó là F(x)=x3−1999x2+1001000x+250000 (đồng). Trong đó chi phí vận hành máy móc cho mỗi sản phẩm là G(x)=23x+1100000x (đồng). Tổng chi phí mua nguyên vật liệu là H(x)=2x3+100000x−50000 (đồng) nhưng do doanh nghiệp đó mua nguyên vật liệu với số lượng lớn nên được giảm 1% cho 200 sản phẩm đầu tiên doanh nghiệp sản xuất và giảm 2% cho sản phẩm tiếp theo. Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Trả lời:
Giả sử chi phí tiền xăng C (đồng) phụ thuộc tốc độ trung bình v(km/h) theo công thức:
C(v)=v16000+25v (0<v≤120)
Để biểu diễn trực quan sự thay đổi của C(v) theo v, người ta đã vẽ đồ thị hàm số C(v) như hình bên.
Tài xế xe tải lái xe với tốc độ trung bình là bao nhiêu để tiết kiệm tiền xăng nhất?
Trả lời:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình vẽ bên dưới.
Phương trình f[2−f(x)]=0 có bao nhiêu nghiệm?
Trả lời: