Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=−x3−3x2+9x−1. Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x)có bảng xét dấu đạo hàm như sau.
Hàm số đã cho đạt cực tiểu tại
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=x4−2x2+3 lần lượt là
Đồ thị hàm số y=x−23x−5 có đường tiệm cận đứng là đường thẳng nào dưới đây?
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Biết đường thẳng y=x−2 cắt đồ thị hàm số y=x−12x+1 tại hai điểm phân biệt A và B có hoành độ xA,xB. Giá trị của biểu thức xA+xB bằng
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Dân số P (nghìn người) của một khu nghỉ dưỡng được cho bởi hàm số P(t)=2t2+7400t,t≥0, với t là thời gian tính theo tháng. Tiệm cận ngang đồ thị hàm số y=P(t) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Cho hàm số y=x+3mmx2+(3m2−2)x−2. Số giá trị của m để góc giữa hai đường tiệm cận của đồ thị hàm số bằng 45∘ là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x)=x+3x2+2x+1 có đồ thị là (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y=f(x)=x−1+x+34,∀x∈(−∞;−3)∪(−3;+∞). |
|
b) Đồ thị (C) không có tiệm cận ngang. |
|
c) Đồ thị (C) có tiệm cận đứng là đường thẳng x=3. |
|
d) Đồ thị (C) có tiệm cận xiên là đường thẳng y=ax+b. Khi đó a2+b2=2. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm y=f(x) có bảng biến thiên như sau:
Tìm số nghiệm của phương trình 4f2(x)−9=0.
Trả lời:
Cho hàm số y=f(x) xác định trên R và có đạo hàm f′(x)=(2−x)(x+3)g(x)+2024 trong đó g(x)<0,∀x∈R. Hàm số y=f(1−x)+2024x+2025 đồng biến trên khoảng (a;b). Tính giá trị biểu thức P=a+b.
Trả lời: .