Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) xác định trên R, có đồ thị như hình vẽ.
Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) có đạo hàm f′(x)=x2(x2−1). Điểm cực tiểu của hàm số y=f(x) là
Bảng biến thiên đã cho là của hàm số nào dưới đây?
.
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Khảo sát về thời gian (phút) đi từ nhà đến nơi làm việc của một số nhân viên trong một công ty như sau.
Thời gian (phút) | Số nhân viên |
[15;20) | 6 |
[20;25) | 14 |
[25;30) | 25 |
[30;35) | 37 |
[35;40) | 21 |
[40;45) | 13 |
[45;50) | 9 |
Khoảng biến thiên của mẫu số liệu trên là
Cho hàm số y=x+1x+m (m là tham số thực). Giá trị của tham số m để [1;2]miny+[1;2]maxy=316 là
Giá trị lớn nhất của hàm số y=−x4+3x2+1 trên [0;2] là
Phương trình chuyển động của một vật được xác định bởi công thức S(t)=t+34t với t là thời gian mà vật chuyển động. Xem y=S(t) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Cho hàm số y=x+12x−1 có đồ thị (C). Biết rằng trên (C) có hai điểm phân biệt mà các tiếp tuyến của (C) tại các điểm đó song song với đường thẳng y=x. Tổng hoành độ của hai điểm đó bằng
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Phỏng vấn một số học sinh khối 11 về thời gian (giờ) ngủ của một buổi tối, người ta thu được bảng số liệu sau:
Thời gian (giờ) | Số lượng |
[4;5) | 6 |
[5;6) | 12 |
[6;7) | 13 |
[7;8) | 10 |
[8;9) | 3 |
Khoảng tứ phân vị của bảng số liệu trên gần nhất với giá trị nào dưới đây?
Kết quả đo chiều cao của 100 cây keo ba năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m) | Số cây |
[8,4;8,6) | 5 |
[8,6;8,8) | 12 |
[8,8;9,0) | 25 |
[9,0;9,2) | 44 |
[9,2;9,4) | 14 |
Phương sai của mẫu số liệu ghép nhóm đã cho (làm tròn đến chữ số hàng phần nghìn) bằng
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi hàm số có công thức c(t)=t2+1t (mg/L).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nồng độ thuốc trong máu của bệnh nhân sau 3 giờ là c(3)=103 (mg/L). |
|
b) Đạo hàm của hàm số c(t)=t2+1t là c′(t)=(t2+1)21−t2. |
|
c) Nồng độ thuốc trong máu bệnh nhân tăng trong khoảng t∈(0;2). |
|
d) Nồng độ thuốc trong máu của bệnh nhân cao nhất khi t=21. |
|
Cho hàm số y=x−2−x2+4x+3+m có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi m=0, tiệm cận đứng của đồ thị hàm số là x=2. |
|
b) Khi m=0, tọa độ giao điểm của tiệm cận đứng đồ thị và đường thẳng x−y−1=0 thuộc parabol y=x2. |
|
c) Khi m=0, lấy M là điểm bất kì trên đồ thị (C), gọi d1 là khoảng cách từ M đến đường tiệm cận đứng, gọi d2 là khoảng cách từ M đến đường thẳng y=−x+2. Khi đó, tích d1.d2=7. |
|
d) Gọi S là tập hợp các giá trị nguyên dương của m để đồ thị hàm số không có tiệm cận đứng. Số phần tử của S là 1. |
|
Trong không gian với hệ toạ độ Oxyz cho hai vectơ a,b thỏa mãn (a;b)=120∘;∣a∣=2;∣b∣=3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) a.b=−3. |
|
b) (3a+2b)2=108. |
|
c) a.(3a+2b)=10. |
|
d) Góc giữa hai vectơ a và x=3a+2b bằng 60∘. |
|
Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 – 2022 cho kết quả sau:
101;79;79;78;75;73;68;67;67;63;
63;61;60;59;57;55;55;50;47;42.
Xét mẫu số liệu ghép nhóm với các nhóm có độ dài bằng nhau của mẫu số liệu trên với nhóm đầu tiên là [40;50).
a) Hiệu giữa khoảng biến thiên của mẫu số liệu gốc và khoảng biến thiên của mẫu số liệu ghép nhóm là 19. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng tứ phân vị thứ nhất của mẫu số liệu gốc. |
|
c) Tứ phân vị thứ ba của mẫu số liệu gốc nhỏ hơn tứ phân vị thứ ba của mẫu số liệu ghép nhóm. |
|
d) Khoảng tứ phân vị của mẫu số liệu gốc nhỏ hơn khoảng tứ phân vị của mẫu số liệu ghép nhóm. |
|
Bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở nông trường như sau:
Cân nặng (g) | Số quả xoài |
[250;290) | 2 |
[290;330) | 12 |
[330;370) | 19 |
[370;410) | 12 |
[410;450) | 5 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời: .
Cho hàm số y=f(x) xác định trên R và và có bảng biến thiên như sau:
Phương trình f(∣x2−2x∣)=2 có bao nhiêu nghiệm thực?
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Trong hóa học cấu tạo của phân tử ammoniac (NH3) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác H1H2H3 với H1,H2,H3 là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H−N−H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm H1,H2,H3 (chẳng hạn như H1NH2) , được gọi là góc liên kết của phân tử NH3. Góc này xấp xỉ 120∘. Trong không gian Oxyz, cho một phân tử NH3 được biểu diễn bởi hình chóp tam giác đều N.H1H2H3 với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm N thuộc trục Oz, ba nguyên tử hydrogen ở các vị trị H1,H2,H3 trong đó H1(0;−3;0) và H2H3 song song với trục Ox. Tính khoảng cách giữa nguyên tử nitrogen với mỗi nguyên tử hydrogen. (làm tròn kết quả đến hàng phần trăm)
Trả lời:
Cho hình hộp chữ nhật ABCD.A′B′C′D′. Trên đoạn thẳng AC và DC′ lần lượt lấy các điểm M và N sao cho MN // BD′. Biết BD′=6, tính độ dài đoạn thẳng MN.
Trả lời:
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời: