Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Số điểm cực trị của hàm số y=34x3−2x2−x−3 là
Hình trên là bảng biến thiên của hàm số nào trong bốn hàm số dưới đây?
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Kết quả điều tra tổng thu nhập trong năm 2022 của một số hộ gia đình trong một địa phương được ghi lại ở bảng sau:
Tổng thu nhập (triệu đồng) | Số hộ gia đình |
[200;250) | 0 |
[250;300) | 45 |
[300;350) | 34 |
[350;400) | 21 |
[400;450) | 0 |
Khoảng biến thiên của mẫu số liệu trên là
Hàm số y=x+12x−m đạt giá trị lớn nhất trên đoạn [0;1] bằng 1 khi
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x−2x2+5 trên [−2;1]. Giá trị của M+2m bằng
Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với x người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức P(x)=4x+255000x. Xem y=P(x) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Cho hàm số y=x+12x−1 có đồ thị (C). Biết rằng trên (C) có hai điểm phân biệt mà các tiếp tuyến của (C) tại các điểm đó song song với đường thẳng y=x. Tổng hoành độ của hai điểm đó bằng
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Mỗi ngày bác Tâm đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày của bác Tâm trong 20 ngày được thống kê lại trong bảng sau:
Quãng đường (km) | Số ngày |
[2,7;3) | 3 |
[3;3,3) | 6 |
[3,3;3,6) | 5 |
[3,6;3,9) | 4 |
[3,9;4,2) | 2 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là
Cho biểu đồ thống kê chiều cao của học sinh nữ lớp 12A:
Phương sai của mẫu số liệu trên (làm tròn đến chữ số hàng phần trăm) bằng
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=x−2−x2+4x+3+m có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi m=0, tiệm cận đứng của đồ thị hàm số là x=2. |
|
b) Khi m=0, tọa độ giao điểm tiệm cận đứng của (C) với đường thẳng x−y−1=0 thuộc parabol y=x2. |
|
c) Khi m=0, lấy M là điểm bất kì trên đồ thị (C), gọi d1 là khoảng cách từ M đến đường tiệm cận đứng, gọi d2 là khoảng cách từ M đến đường thẳng y=−x+2. Tích d1.d2=7. |
|
d) Gọi S là tập hợp các giá trị nguyên dương của m để (C) không có tiệm cận đứng. Số phần tử của S là 1. |
|
Cho tứ diện ABCD có các cạnh đều bằng a.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AD+CB+BC+DA=0. |
|
b) AB.BC=−2a2. |
|
c) AC.AD=AC.CD. |
|
d) AB.CD=0. |
|
Bảng tần số ghép nhóm dưới đây thống kê theo độ tuổi số lượng thành viên nam và thành viên nữ đang sinh hoạt trong một câu lạc bộ dưỡng sinh.
Khoảng tuổi | Số thành viên nam | Số thành viên nữ |
[50;55) | 4 | 3 |
[55;60) | 7 | 4 |
[60;65) | 4 | 5 |
[65;70) | 6 | 3 |
[70;75) | 15 | 7 |
[75;80) | 12 | 14 |
[80;85) | 2 | 13 |
[85;90) | 0 | 1 |
a) Khoảng biến thiên của hai mẫu số liệu đều là 40. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu tuổi của thành viên nam là 61,875. |
|
c) Khoảng tứ phân vị của mẫu số liệu tuổi của thành viên nữ lớn hơn 14. |
|
d) So sánh hai khoảng tứ phân vị của mẫu số liệu, ta được mẫu số liệu tuổi của nam giới đồng đều hơn nữ giới. |
|
Bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở nông trường như sau:
Cân nặng (g) | Số quả xoài |
[250;290) | 2 |
[290;330) | 12 |
[330;370) | 19 |
[370;410) | 12 |
[410;450) | 5 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời: .
Cho hàm số bậc bốn y=f(x) có đồ thị như hình vẽ:
Phương trình ∣f(x)∣=1 có bao nhiêu nghiệm phân biệt?
Trả lời:
Ban đầu bạn An ở vị trí điểm A muốn đến điểm C ở bên bờ sông. Biết rằng An đứng đối diện và cách chiếc cọc tại điểm B một khoảng cách 10 km. Khi sang sông, An sẽ đến vị trí điểm M bất kì thuộc đoạn thẳng BC.
Biết trên sông, An di chuyển với vận tốc 30 km/h và trên đất liền, An di chuyển với vận tốc 50 km/h. Tính 5MB+3MC (đơn vị km) để bạn An đến vị trí điểm C nhanh nhất?
Trả lời:
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Cho hình hộp chữ nhật ABCD.A′B′C′D′. Trên đoạn thẳng AC và DC′ lần lượt lấy các điểm M và N sao cho MN // BD′. Biết BD′=6, tính độ dài đoạn thẳng MN.
Trả lời:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời: