Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Hàm số y=x3−5x2+3x+1 đạt cực trị tại
Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như hình dưới đây:
Khi đó giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−10;10] bằng
Đồ thị hàm số nào sau đây nhận đường thẳng x=2 làm đường tiệm cận đứng?
Cho đường cong (C) có phương trình y=x+1x−1. Gọi M là giao điểm của (C) với trục tung. Tiếp tuyến của (C) tại M có phương trình là
Một cửa hàng trang sức khảo sát một số khách hàng xem họ dự định mua trang sức với mức giá nào (đơn vị: triệu đồng). Kết quả khảo sát được ghi lại ở bảng sau:
Mức giá | Số khách hàng |
[6;9) | 20 |
[9;12) | 75 |
[12;15) | 48 |
[15;18) | 23 |
[18;21) | 12 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ a=(5;7;2),b=(3;0;1),c=(−6;1;−1). Tọa độ của vectơ m=3a−2b+c là
Giá trị của tham số m để hàm số y=f(x)=x+12x−3 có giá trị lớn nhất trên đoạn [0;m] bằng 74 là
Số giá trị của tham số m để đồ thị hàm số y=mx+1x+m không có tiệm cận đứng là
Cho biểu đồ thống kê chiều cao của học sinh nữ lớp 12A:
Phương sai của mẫu số liệu trên (làm tròn đến chữ số hàng phần trăm) bằng
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Nếu một vật có khối lượng m (kg) thì lực hấp dẫn P (N) của Trái Đất tác dụng lên vật được xác định theo công thức: P=m.g, trong đó g là gia tốc rơi tự do có độ lớn g=9,8 m/s2. Một bóng đèn có khối lượng 500 g được treo thẳng đứng vào trần nhà bằng một sợi dây và đang ở trạng thái cân bằng. Dây treo phải chịu lực căng tối thiểu là bao nhiêu N để không bị đứt?
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng 1. Gọi N là trung điểm của BC.
a) AA′.AN=0. |
|
b) AB.AC=21. |
|
c) AN.A′B=23 |
|
d) (AN,A′B)=60∘ |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Hàm số y=f(x) nghịch biến trên khoảng (0;2). |
|
b) Hàm số y=f(x) đạt cực tiểu tại x=1. |
|
c) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=f(x) là 3. |
|
d) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=3f(x)−22 là 6. |
|
Bảng sau thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An.
Thời gian (phút) |
Số ngày tập của Bình |
Số ngày tập của An |
[15;20) | 5 | 5 |
[20;25) | 10 | 5 |
[25;30) | 10 | 15 |
[30;35) | 2 | 3 |
[35;40) | 1 | 0 |
a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20 . |
|
b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28 . |
|
c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. |
|
d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. |
|
Bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở nông trường như sau:
Cân nặng (g) | Số quả xoài |
[250;290) | 2 |
[290;330) | 12 |
[330;370) | 19 |
[370;410) | 12 |
[410;450) | 5 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời: .
Có bao nhiêu giá trị nguyên của tham số m để hàm số y=3x3−(2m−1)2x2+(m2−m−2)x+1 nghịch biến trên khoảng (1;2)?
Trả lời:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;−1;2), B(−1;1;1), C(−3;−3;4), D(1;21;1). Điểm M thay đổi trên mặt phẳng (Oxy). Khi biểu thức T=−3(MDMA)2−2(MDMB)2+(MDMC)2 đạt giá trị lớn nhất thì hoành độ của điểm M bằng bao nhiêu?
Trả lời:
Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số P(t)=b+e−0,75ta, trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t=0, quần thể có 20 tế bào và tăng với tốc độ 12 tế bào/giờ. Theo mô hình này, số lượng nấm men không vượt quá bao nhiêu?
Trả lời:
Cho hàm số f(x)=x3−mx+2, m là tham số. Biết rằng đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ là a, b, c. Tính giá trị biểu thức P=f′(a)1+f′(b)1+f′(c)1
Trả lời:
Giả sử đường thẳng y=x+m cắt đồ thị hàm số y=x−1x tại hai điểm phân biệt A, B. Biết giá trị nhỏ nhất của AB là ab. Tính a+b.
Trả lời: