Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−2024)2024(x−2025)2025,∀x∈R. Số điểm cực đại của hàm số đã cho là
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Khẳng định nào sau đây đúng?
Đường thẳng y=ax+b với a,b∈R và a=0 là tiệm cận xiên của đồ thị hàm số y=f(x). Mệnh đề nào sau đây đúng?
Tiếp tuyến của đồ thị hàm số y=−x3+2x−1 tại điểm M(0;−1) có hệ số góc là
Kết quả thu thập điểm số môn Toán của 25 học sinh khi tham gia kì thi học sinh giỏi toán 12 (thang điểm 20) cho ta bảng tần số ghép nhóm sau:
Nhóm | Số học sinh |
[4;8) | 8 |
[8;12) | 12 |
[12;16) | 3 |
[16;20) | 2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho tứ diện ABCD. Mệnh đề nào dưới đây đúng?
Hàm số y=x+12x−m đạt giá trị lớn nhất trên đoạn [0;1] bằng 1 khi
Giá trị của tham số m để đồ thị hàm số y=2x−m(m+1)x−5m có tiệm cận ngang là đường thẳng y=1 là
Kết quả đo chiều cao của 100 cây keo ba năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m) | Số cây |
[8,4;8,6) | 5 |
[8,6;8,8) | 12 |
[8,8;9,0) | 25 |
[9,0;9,2) | 44 |
[9,2;9,4) | 14 |
Phương sai của mẫu số liệu ghép nhóm đã cho (làm tròn đến chữ số hàng phần nghìn) bằng
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Nếu một vật có khối lượng m (kg) thì lực hấp dẫn P (N) của Trái Đất tác dụng lên vật được xác định theo công thức: P=m.g, trong đó g là gia tốc rơi tự do có độ lớn g=9,8 m/s2. Một bóng đèn có khối lượng 500 g được treo thẳng đứng vào trần nhà bằng một sợi dây và đang ở trạng thái cân bằng. Dây treo phải chịu lực căng tối thiểu là bao nhiêu N để không bị đứt?
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AB+B′C′+CD+D′A′=0. |
|
b) AB′.CD′=0. |
|
c) AC′=3. |
|
d) AD′.AB′=a23. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hàm số y=f(x)=x2−2x+6x+1 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên khoảng (0;1). |
|
b) Hàm số đạt cực đại tại x=−4. |
|
c) Với m=83 thì đường thẳng (Δ) đi qua hai điểm cực trị của đồ thị (C) vuông góc với đường thẳng d:(2m+3)x+my+2=0. |
|
d) Có 2024 giá trị nguyên của tham số m∈[−2;2028] để giá trị lớn nhất của hàm số h(x)=f(cosx−3sinx+1)+m2 lớn hơn 5. |
|
Bảng tần số ghép nhóm dưới đây thống kê theo độ tuổi số lượng thành viên nam và thành viên nữ đang sinh hoạt trong một câu lạc bộ dưỡng sinh.
Khoảng tuổi | Số thành viên nam | Số thành viên nữ |
[50;55) | 4 | 3 |
[55;60) | 7 | 4 |
[60;65) | 4 | 5 |
[65;70) | 6 | 3 |
[70;75) | 15 | 7 |
[75;80) | 12 | 14 |
[80;85) | 2 | 13 |
[85;90) | 0 | 1 |
a) Khoảng biến thiên của hai mẫu số liệu đều là 40. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu tuổi của thành viên nam là 61,875. |
|
c) Khoảng tứ phân vị của mẫu số liệu tuổi của thành viên nữ lớn hơn 14. |
|
d) So sánh hai khoảng tứ phân vị của mẫu số liệu, ta được mẫu số liệu tuổi của nam giới đồng đều hơn nữ giới. |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Giá trị nguyên lớn nhất của m để hàm số y=cos2xm−sinx nghịch biến trên khoảng (0;6π) là bao nhiêu?
Trả lời:
Cho hình hộp ABCD.A′B′C′D′ có các cạnh đều bằng a và B′A′D′=60∘,B′A′A=D′A′A=120∘. Tính số đo (đơn vị độ) của góc giữa hai đường thẳng AB với A′D.
Trả lời: ∘
Một người đàn ông muốn chèo thuyền ở vị trí A tới điểm B về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến C và sau đó chạy đến B, hay có thể chèo trực tiếp đến B, hoặc anh ta có thể chèo thuyền đến một điểm D giữa C và B và sau đó chạy đến B. Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường BC=8 km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tìm khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến B.
Trả lời:
Cho hàm số y=x2+1mx2+(m+2)x+5. Gọi S là tập hợp các giá trị của m sao cho đồ thị hàm số đã cho có đúng hai điểm cực trị và đường thẳng nối hai điểm cực trị của đồ thị hàm số cắt hai trục tọa độ tạo thành một tam giác có diện tích bằng 425. Tính tổng giá trị các phần tử thuộc tập S.
Trả lời:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−10;10] để đồ thị hàm số y=x3−3x2+2 cắt đường thẳng y=m(x−1) tại ba điểm phân biệt có hoành độ x1,x2,x3 thoả mãn x12+x22+x32>5?
Trả lời: