Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Khảo sát thời gian tự học bài ở nhà của học sinh khối 9 ở trường X, ta thu được bảng sau:
Thời gian (phút) | Số học sinh |
[0;30) | 9 |
[30;60) | 10 |
[60;90) | 9 |
[90;120) | 15 |
[120;150) | 7 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Cho tứ diện ABCD. Mệnh đề nào dưới đây đúng?
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Trong không gian Oxyz cho a=i−2k. Tọa độ a là
Hàm số y=−x3+3x2+9x−1 đồng biến trên khoảng nào sau đây?
Hàm số nào dưới đây có bảng biến thiên như hình vẽ?
Cho hàm số y=x+12x+1. Khẳng định sai là
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ:
Trên đoạn [0;1], hàm số y=f(x) đạt giá trị nhỏ nhất tại
Thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X được cho trong bảng sau:
Thời gian (phút) | Số bệnh nhân |
[0;5) | 3 |
[5;10) | 12 |
[10;15) | 15 |
[15;20) | 8 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm này (làm tròn đến chữ số hàng phần trăm) là
Trong không gian cho điểm O và bốn điểm A,B,C,D không có ba điểm nào thẳng hàng. Điều kiện cần và đủ để A,B,C,D tạo thành hình bình hành là
Cho hàm số y=f(x) có đồ thị của hàm số y=f′(x) như hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Cho hàm số y=x3−3x2+5 có đồ thị (C). Độ dài đoạn thẳng nối hai điểm cực trị của đồ thị (C) bằng
Bảng số liệu ghép nhóm dưới đây thống kê thời gian của những lần Linh đi xe buýt từ nhà đến cơ quan:
a) Cỡ mẫu của mẫu số liệu ghép nhóm trên là n=31. |
|
b) Số trung bình của mẫu số liệu ghép nhóm trên là 25,2. |
|
c) Trung vị của mẫu số liệu ghép nhóm trên là Q2=25,05. |
|
d) Phương sai của mẫu số liệu ghép nhóm trên là 39,36. |
|
Trong không gian Oxyz cho các điểm A(5;1;5);B(4;3;2);C(−3;−2;1).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tọa độ trọng tâm của tam giác ABC là G(3;1;38). |
|
b) AB=14;BC=53. |
|
c) Tam giác ABC là một tam giác vuông. |
|
d) Gọi I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Khi đó a+2b+c=3. |
|
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=t+526t+10 (với f(t) được tính bằng nghìn người)
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số dân của thi trấn đó sau 10 năm khoảng 16000 người. |
|
b) Số dân thị trấn đó vào năm 2025 khoảng 24 nghìn người. |
|
c) Coi f(t)là một hàm số xác định trên nửa khoảng [0;+∞). Đồ thị hàm số y=f(t)=t+526t+10 có tiệm cận ngang là y=26. |
|
d) Đạo hàm của hàm số y=f(t) biểu thị tốc độ tăng dân số của thị trấn (tính bằng nghìn người/năm). Vào năm 1990 thì tốc độ tăng dân số là 0,127 nghìn người trên /năm. |
|
Xét hàm số y=2x−sin2x trên khoảng (0;π).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số nghịch biến trên khoảng (125π;π). |
|
b) Hàm số có hai điểm cực trị. |
|
c) Giá trị cực tiểu của hàm số là 245π−42+3. |
|
d) Đồ thị hàm số y=f′(x) cắt đồ thị hàm số y=2−sin22x tại 2 điểm trên khoảng (0;π). |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Cho biểu đồ thống kê chiều cao của học sinh nữ lớp 12A:
Tính độ lệch chuẩn của mẫu số liệu trên. (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời: .
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Diện tích hình thang EFGH đạt giá trị nhỏ nhất khi x+y=2a2. Tìm giá trị của a (đơn vị cm).
Trả lời:
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời: