Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=x+35−2x nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Mệnh đề nào sau đây đúng?
Cho hàm đa thức y=g(x), có bảng biến thiên hàm đạo hàm y=g′(x)=f(x) như sau:
Hàm số y=g(x) đồng biến trên khoảng nào sau đây?
Giá trị lớn nhất của hàm số y=x3−23x2+1 trên khoảng (−25;1011) là
Đồ thị hàm số y=x2+9x có bao nhiêu đường tiệm cận?
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Biết đường thẳng y=x−2 cắt đồ thị hàm số y=x−12x+1 tại hai điểm phân biệt A và B có hoành độ xA,xB. Giá trị của biểu thức xA+xB bằng
Dân số P (nghìn người) của một khu nghỉ dưỡng được cho bởi hàm số P(t)=2t2+7400t,t≥0, với t là thời gian tính theo tháng. Tiệm cận ngang đồ thị hàm số y=P(t) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Số giá trị của tham số m để đồ thị hàm số y=mx+1x+m không có tiệm cận đứng là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x), có đồ thị như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Tiệm cận xiên của đồ thị hàm số y=f(x) là đường thẳng y=x+1. |
|
b) Tiệm cận đứng của đồ thị hàm số là x=0. |
|
c) x→+∞limxf(x)=2. |
|
d) x→+∞lim[f(x)−x]=3. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x>1 và y>1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m.
Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Một cốc chứa 20 ml dung dịch KOH (Potassium Hydroxide) với nồng độ 100 mg/ml và một bình chứa dung dịch KOH khác với nồng độ 10 mg/ml. Lấy x (ml) ở bình trộn vào cốc ta được dung dịch KOH có nồng độ C(x). Coi C(x) là hàm số xác định với x≥0. Khi x∈[5;15], nồng độ của dung dịch KOH đạt giá trị lớn nhất bằng bao nhiêu mg/ml?
Trả lời: mg/ml
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Ban đầu bạn An ở vị trí điểm A muốn đến điểm C ở bên bờ sông. Biết rằng An đứng đối diện và cách chiếc cọc tại điểm B một khoảng cách 10 km. Khi sang sông, An sẽ đến vị trí điểm M bất kì thuộc đoạn thẳng BC.
Biết trên sông, An di chuyển với vận tốc 30 km/h và trên đất liền, An di chuyển với vận tốc 50 km/h. Tính 5MB+3MC (đơn vị km) để bạn An đến vị trí điểm C nhanh nhất?
Trả lời:
Cho hàm số y=f(x) xác định trên R\{0} và có bảng biến thiên như hình sau:
Phương trình f(x2)=1 có bao nhiêu nghiệm?
Trả lời:
Cho hàm số y=f(x) xác định trên R và có đạo hàm f′(x)=(2−x)(x+3)g(x)+2024 trong đó g(x)<0,∀x∈R. Hàm số y=f(1−x)+2024x+2025 đồng biến trên khoảng (a;b). Tính giá trị biểu thức P=a+b.
Trả lời: .