Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Gọi I là trung điểm của AB và điểm M bất kì khác I, A, B. Khẳng định nào sau đây sai?
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương ABCD.A′B′C′D′ có đỉnh A trùng với gốc toạ độ O, điểm B(1;0;0), D(0;1;0), D′(0;1;−1).
Toạ độ vectơ B′D′ tương ứng là
Cho hàm số y=f(x) có f′(x)=x2021.(x+1)2020.(x−1), ∀x∈R. Hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) xác định trên R, có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
Giá trị lớn nhất của hàm số y=x3−23x2+1 trên khoảng (−25;1011) là
Hàm số nào dưới đây có đồ thị là đường cong trong hình vẽ?
Điểm nào sau đây thuộc đồ thị của hàm số y=x4−3x2−5?
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Một ứng dụng của hàm số trong vật lý là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt x=AB;y=AC;z=AD. Biểu diễn AG theo x;y;z ta được
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Trong không gian cho điểm O và bốn điểm A,B,C,D không có ba điểm nào thẳng hàng. Điều kiện cần và đủ để A,B,C,D tạo thành hình bình hành là
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Gọi O là giao điểm của AC và BD.
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) OA+OB+OC+OD=0. |
|
b) SA+SB+SC+SD=0. |
|
c) AB.SO=0. |
|
d) AB.BD=a2. |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x)=x+12x2+5x+4.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tiệm cận đứng của đồ thị hàm số là x=−1. |
|
b) x→+∞limxf(x)=2. |
|
c) x→+∞lim[f(x)−2x]=5. |
|
d) Tiệm cận xiên của đồ thị hàm số là đường thẳng y=2x+3. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Trong hóa học cấu tạo của phân tử ammoniac (NH3) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác H1H2H3 với H1,H2,H3 là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H−N−H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm H1,H2,H3 (chẳng hạn như H1NH2) , được gọi là góc liên kết của phân tử NH3. Góc này xấp xỉ 120∘. Trong không gian Oxyz, cho một phân tử NH3 được biểu diễn bởi hình chóp tam giác đều N.H1H2H3 với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm N thuộc trục Oz, ba nguyên tử hydrogen ở các vị trị H1,H2,H3 trong đó H1(0;−3;0) và H2H3 song song với trục Ox. Tính khoảng cách giữa nguyên tử nitrogen với mỗi nguyên tử hydrogen. (làm tròn kết quả đến hàng phần trăm)
Trả lời:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị k trong đẳng thức vectơ MN=k(AD+BC). (ghi kết quả dưới dạng số thập phân)
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm số y=f(x) liên tục trên R, có đồ thị (C) như hình vẽ sau:
Phương trình ∣f(x)∣=2 có bao nhiêu nghiệm trên đoạn [0;3]?
Trả lời:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y=3x+x2+3mx có các điểm cực trị nằm trong hình tròn tâm O, bán kính R=130 ?
Trả lời: