Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, có bao nhiêu câu là mệnh đề?
(i) Hãy mở cửa ra!
(ii) Số 25 chia hết cho 8.
(iii) Số 17 là số nguyên tố.
(iv) Bạn thích ăn phở không?
Cho hai mệnh đề: P: "30 không chia hết cho 5" và Q: "π<3,15". Khẳng định nào sau đây đúng?
Cho hai tập hợp A và B được minh họa bằng biểu đồ Ven như hình vẽ:
Khi đó tập hợp C=A∪B là
Miền nghiệm của bất phương trình 5(x+2)−9<2x−2y+7 là phần mặt phẳng không chứa điểm nào sau đây?
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây sai?
Cho tam giác ABC có B=45∘, cạnh AC=22 cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC bằng
Cho tam giác ABC có AB=6, AC=8, A=60∘. Độ dài cạnh BC là
Cho hai tập hợp A={x∈R(2x−x2)(x−1)=0}, B={n∈N0<n2<10}. Mệnh đề nào sau đây đúng?
Miền không bị tô màu trong hình vẽ (kể cả biên) là miền nghiệm của hệ bất phương trình nào sau đây?
Biểu thức f(x)=cos4x+cos2xsin2x+sin2x có giá trị bằng
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Cho hai tập hợp A={x∈Rx+3<4+2x}, B={x∈R5x−3<4x−1}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−1;+∞). |
|
b) B=(−∞;2]. |
|
c) A∩B=(−1;2). |
|
d) Tập tất cả các số tự nhiên thuộc cả hai tập A và B là {0;1}. |
|
Đô thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho Đô 200 nghìn đồng để mua trái cây. Biết rằng giá cam là 15 000 đồng/1 kg, giá xoài là 30 000 đồng/1 kg. Gọi x,y (với a>0;y>0) lần lượt là số ki-lô-gam cam và xoài mà Đô có thể mua về sử dụng trong một tuần.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong tuần, số tiền Đô có thể mua cam là 15000x đồng, số tiền An có thể mua xoài là 30000y đồng. |
|
b) 3x+6y≥40. |
|
c) Đô không thể mua đủ 5 kg cam, 4 kg xoài sử dụng trong tuần. |
|
d) Đô có thể mua 4 kg cam, 6 kg xoài sử dụng trong tuần. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=31 với 90∘<α<180∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0. |
|
b) cosα=−322. |
|
c) tanα=−221. |
|
d) cotα=22. |
|
Ở lớp 10A, mỗi học sinh đều có thể chơi được ít nhất một trong ba môn thể thao là cầu lông, bóng đá và bóng chuyền. Có 11 em chơi được bóng đá, 10 em chơi được cầu lông và 8 em chơi được bóng chuyền. Có 2 em chơi được cả ba môn, có 5 em chơi được bóng đá và bóng chuyền, có 4 em chơi được bóng đá và cầu lông, có 4 em chơi được bóng chuyền và cầu lông. Lớp học có bao nhiêu học sinh?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Một hộ nông dân trên cao nguyên định trồng cà phê và ca cao trên diện tích 10 ha. Nếu trồng cà phê thì cần 20 công và thu về 10 triệu đồng trên diện tích mỗi ha, nếu trồng cacao thì cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Cần trồng x ha cà phê và y ha cacao để thu được lợi nhuận lớn nhất, biết rằng số công trồng cà phê không vượt quá 100 công và số công trồng ca cao không vượt quá 180 công. Tính x+y.
Trả lời:
Một ô tô muốn đi từ A đến C nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có AB=15 km, BC=20 km và ABC=120∘. Giả sử ô tô chạy 5 km tốn một lít xăng, giá một lít xăng là 20 000 đồng.
Nếu người ta làm một đoạn đường hầm xuyên núi chạy thẳng từ A đến C, khi đó ô tô chạy trên con đường này sẽ tiết kiệm được số tiền là bao nhiêu nghìn đồng so với chạy trên đường cũ? (Làm tròn kết quả đến hàng phần mười)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=nm, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Tính giá trị nhỏ nhất của biểu thức F(x;y)=−x+4y với (x;y) thuộc miền nghiệm của hệ bất phương trình ⎩⎨⎧x≥1x≤2y≥0y≤3.
Trả lời: