Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Câu nào sau đây không phải là mệnh đề?
Mệnh đề phủ định của mệnh đề "9+π≥12" là
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Miền nghiệm của bất phương trình 3x+2(y+3)≥4(x+1)−y+3 là nửa mặt phẳng chứa điểm nào sau đây?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Giá trị của tan45∘+cot135∘ bằng
Tam giác ABC có tổng hai góc B và C bằng 135∘ và độ dài cạnh BC bằng a. Bán kính đường tròn ngoại tiếp tam giác đã cho bằng
Cho tam giác ABC có a=BC=8,b=AC=10, C=60∘. Độ dài cạnh AB là
Cho A={x∈Nx⋮6}; B={x∈Nx⋮2,x⋮3}. Khẳng định nào sau đây sai?
Miền không bị gạch là miền nghiệm của hệ bất phương trình nào sau đây?
Cho sinx+cosx=m. Giá trị của M=sinx.cosx tính theo m là
Cho góc α thỏa mãn cosα=31. Giá trị của biểu thức P=sinα+cosα1 bằng
Cho các tập hợp CRA=[−3;8), CRB=(−5;2)∪(3;11).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−∞;−3)∪[8;+∞). |
|
b) B=(−∞;−5)∪(11;+∞). |
|
c) A∩B=(−∞;−5)∪[8;+∞). |
|
d) CR(A∩B)=(−5;11). |
|
Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ A thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ B thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi x,y theo thứ tự là số lần người chơi chọn được chữ A và chữ B.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số điểm người chơi đạt được khi chọn chữ A là 3x, tổng số điểm người chơi bị trừ khi chọn chữ B là y. |
|
b) Bất phương trình bậc nhất hai ẩn x,y trong tình huống người chơi chiến thắng là 3x−y≤20. |
|
c) Người chơi chọn được chữ A 7 lần và chọn được chữ B 1 lần thì người đó vừa đủ điểm giành chiến thắng trò chơi. |
|
d) Người chơi chọn được chữ A 8 lần và chọn được chữ B 3 lần thì người đó vừa đủ điểm giành chiến thắng trò chơi. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho cosα=−43 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sin2α=167. |
|
b) sinα<0. |
|
c) sinα=−47. |
|
d) cotα=−737. |
|
Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lí, 14 học sinh giỏi cả môn Toán và Lí và có 6 học sinh không giỏi môn nào cả. Lớp học đó có bao nhiêu học sinh?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:
Nhóm | Số máy trong mỗi nhóm | Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm | |
Loại I | Loại II | ||
A | 10 | 2 | 2 |
B | 4 | 0 | 2 |
C | 12 | 2 | 4 |
Một đơn vị sản phẩm I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Phương án sản xuất x sản phẩm loại I và y sản phẩm loại II sẽ cho lãi cao nhất. Tính x+y.
Trả lời:
Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB=40 m, CAB=45∘ và CBA=70∘.
Sau khi đo đạc và tính toán ta được khoảng cách AC bằng bao nhiêu mét? (làm tròn kết quả đến hàng phần mười)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=nm, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Cho biểu thức T=3x−2y−4 với x và y thỏa mãn hệ bất phương trình: ⎩⎨⎧x−y−1≤0x+4y+9≥0x−2y+3≥0. Biết T đạt giá trị nhỏ nhất khi x=x0 và y=y0. Tính x02+y02.
Trả lời: