Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào không là mệnh đề?
Tập hợp A={21;32;43;54;65} khi viết bằng cách nêu tính chất đặc trưng của phần tử là
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Điểm M(−1;3) thuộc miền nghiệm của bất phương trình nào sau đây?
Cho hàm số f(x)={x+x−2,khix≥21−3x,khix<2. Giá trị f(1) bằng
Hàm số nào có đồ thị như hình vẽ bên dưới?
Giá trị của E=sin36∘.cos6∘−sin126∘.cos84∘ bằng
Cho tam giác ABC có AB=5, AC=2, C=45∘. Độ dài cạnh BC là
Cho tam giác ABC có AB=5, B=60∘, C=45∘. Độ dài cạnh AC là
Cho hai tập hợp A=(m−1;5);B=(3;+∞),m∈R. Tổng các giá trị nguyên m để A\B=∅ bằng
Phần tô màu (không bao gồm đường thẳng nét đứt) trong hình nào sau đây là miền nghiệm của bất phương trình 2x−y+3<0?
Miền nghiệm của hệ bất phương trình ⎩⎨⎧x≥−1x+y≤0y≥0 là
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là X và Y. Mỗi gói thực phẩm X chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin B. Mỗi gói thực phẩm Y chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin B. Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin B. Mỗi ngày không được dùng quá 12 gói mỗi loại.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là ⎩⎨⎧x+y≥122x+y≥16x+2y≥140≤x≤120≤y≤12. |
|
b) Điểm (10;8) không thuộc miền nghiệm của hệ bất phương trình mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B. |
|
c) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là một ngũ giác. |
|
d) Biết 1 gói thực phẩm loại X giá 20000 đồng, 1 gói thực phẩm loại Y giá 25 000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại X và 2 gói thực phẩm loại Y để chi phí mua là ít nhất. |
|
Cho tanα=−125.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) α∈(90∘;180∘). |
|
b) cosα=1312. |
|
c) cotα=512. |
|
d) sinα=135. |
|
Ở lớp 10A, mỗi học sinh đều có thể chơi được ít nhất một trong ba môn thể thao là cầu lông, bóng đá và bóng chuyền. Có 11 em chơi được bóng đá, 10 em chơi được cầu lông và 8 em chơi được bóng chuyền. Có 2 em chơi được cả ba môn, có 5 em chơi được bóng đá và bóng chuyền, có 4 em chơi được bóng đá và cầu lông, có 4 em chơi được bóng chuyền và cầu lông. Lớp học có bao nhiêu học sinh?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24 g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1 g hương liệu; pha chế 1 lít nước táo cần 10 g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính a−b.
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F=3y−2x trên miền xác định bởi hệ ⎩⎨⎧x−y≤6x≥2x+y≤4.
Trả lời:
Một ô tô muốn đi từ A đến C nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có AB=15 km, BC=20 km và ABC=120∘. Giả sử ô tô chạy 5 km tốn một lít xăng, giá một lít xăng là 20 000 đồng.
Nếu người ta làm một đoạn đường hầm xuyên núi chạy thẳng từ A đến C, khi đó ô tô chạy trên con đường này sẽ tiết kiệm được số tiền là bao nhiêu nghìn đồng so với chạy trên đường cũ? (Làm tròn kết quả đến hàng phần mười)
Trả lời:
Cho tanα=2. Tính C=sin3α+3cos3α+2sinαsinα−cosα (Làm tròn kết quả đến hàng phần trăm).
Trả lời: