Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Phủ định của mệnh đề Q: "∃x∈Z,2x2−3x+1=0" là
Số phần tử của tập hợp A={k2+1k∈Z,∣k∣≤2} là
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Cặp số nào sau đây là nghiệm của bất phương trình 5x−2y<3?
Đồ thị hàm số nào sau đây là parabol có đỉnh I(−1;2)?
Giá trị của E=sin36∘.cos6∘−sin126∘.cos84∘ bằng
Cho tam giác ABC có AB=3, BC=5 và độ dài đường trung tuyến BM=13.
Độ dài AC bằng
Trong tam giác ABC có B=75∘, C=45∘, AB=6. Độ dài cạnh BC bằng
Cho hai mệnh đề: P: "30 không chia hết cho 5" và Q: "π<3,15". Khẳng định nào sau đây đúng?
Cho A=[m;m+1]; B=[1;4). Các giá trị của m để A∩B=∅ là
Miền nghiệm của bất phương trình sau x−2y+1<0 là phần tô màu (không bao gồm đường thẳng nét đứt) trong hình vẽ nào dưới đây?




Miền không bị gạch là miền nghiệm của hệ bất phương trình nào sau đây?
Cho các tập hợp CRA=[−3;8), CRB=(−5;2)∪(3;11).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−∞;−3)∪[8;+∞). |
|
b) B=(−∞;−5)∪(11;+∞). |
|
c) A∩B=(−∞;−5)∪[8;+∞). |
|
d) CR(A∩B)=(−5;11). |
|
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là X và Y. Mỗi gói thực phẩm X chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin B. Mỗi gói thực phẩm Y chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin B. Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin B. Mỗi ngày không được dùng quá 12 gói mỗi loại.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là ⎩⎨⎧x+y≥122x+y≥16x+2y≥140≤x≤120≤y≤12. |
|
b) Điểm (10;8) không thuộc miền nghiệm của hệ bất phương trình mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B. |
|
c) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là một ngũ giác. |
|
d) Biết 1 gói thực phẩm loại X giá 20000 đồng, 1 gói thực phẩm loại Y giá 25 000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại X và 2 gói thực phẩm loại Y để chi phí mua là ít nhất. |
|
Cho sinα=32 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cos2α=95. |
|
c) cosα=−35. |
|
d) 2sinα+cosαsinα+5cosα=4+57. |
|
Lớp 10A có 21 em thích học Toán, 19 em thích học Văn và có 18 em thích học tiếng Anh. Trong số đó có 9 em thích học cả Toán lẫn Văn, 7 em thích học cả Văn lẫn tiếng Anh, 6 em thích học cả Toán lẫn tiếng Anh và có 4 em thích học cả ba môn Toán, Văn, Anh, không có em nào không thích một trong ba môn học trên. Trong lớp 10A có bao nhiêu học sinh?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Một hộ nông dân dự định trồng đậu và cà trên diện tích 8 ha. Nếu trồng đậu thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng cà thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Để thu về được nhiều tiền nhất nông dân cần trồng a ha đậu và b ha cà, biết rằng tổng số công không quá 180. Tính a+b.
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F=3y−2x trên miền xác định bởi hệ ⎩⎨⎧x−y≤6x≥2x+y≤4.
Trả lời:
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí A.
Diện tích nhỏ nhất có thể giăng là bao nhiêu m2, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m. (Làm tròn kết quả đến hàng đơn vị)
Trả lời:
Cho tanα=2. Tính C=sin3α+3cos3α+2sinαsinα−cosα (Làm tròn kết quả đến hàng phần trăm).
Trả lời: