Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hình lập phương ABCD.A1B1C1D1 có tâm O. Đẳng thức nào sau đây đúng?
Trong không gian Oxyz, cho điểm M thỏa mãn hệ thức OM=2i+k. Tọa độ của điểm M là
Hàm số nào sau đây có ba điểm cực trị?
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Giá trị nhỏ nhất của hàm số y=x+1x−1 trên đoạn [0;3] là
Hàm số y=x−1x−2 có đồ thị là hình vẽ nào sau đây?




Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Cho hàm số y=f(x) xác định trên R\{1} và có bảng biến thiên như hình bên dưới.
Số nghiệm của phương trình f(x)=0 là
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt x=AB;y=AC;z=AD. Biểu diễn AG theo x;y;z ta được
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=d;SC=c; SD=b. Khẳng định nào sau đây đúng?
Cho hình hộp ABCD.A′B′C′D′; Các điểm M,N lần lượt thuộc các đường thẳng CA và DC′ sao cho MC=mMA;ND=mNC′. Đặt BA=a;BB′=b;BC=c.
a) BD′=a+b−c. |
|
b) BM=1−mc−ma. |
|
c) BN=1−m1a−1−mmb+c. |
|
d) m=21 thì MN // BD′. |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=x−2x+2 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Đồ thị (C) có đường tiệm cận đứng x=2. |
|
b) Đồ thị (C) nhận điểm I(1;1) làm tâm đối xứng. |
|
c) Đường thẳng đường thẳng d:y=x−1 cắt đồ thị (C) tại 2 điểm phân biệt có độ dài bằng 45. |
|
d) Gọi M là điểm bất kì thuộc đồ thị (C). Khi đó tổng khoảng cách từ điểm M đến hai đường tiệm cận của đồ thị (C) đạt giá trị nhỏ nhất bằng 4. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là điểm bất kì trong không gian. Tìm giá trị k trong đẳng thức vectơ PI=k(PA+PB+PC+PD). (Ghi kết quả dưới dạng số thập phân)
Trả lời:
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0<x<2000), tổng số tiền doanh nghiệp thu được là F(x)=2000x−x2 (chục nghìn đồng) và tổng chi phí doanh nghiệp bỏ ra là G(x)=x2+1440x+50 (chục nghìn đồng). Công ty cũng phải chịu mức thuế phụ thu cho một đơn vị sản phẩm bán được là t (chục nghìn đồng), (0<x<300). Mức thuế phụ thu t (trên một đơn vị sản phẩm) là bao nhiêu nghìn đồng sao cho nhà nước thu được số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng thu được lợi nhuận nhiều nhất theo đúng mức thuế phụ thu đó? (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Cho hàm số y=f(x) liên tục trên R, có đồ thị (C) như hình vẽ sau:
Phương trình ∣f(x)∣=2 có bao nhiêu nghiệm trên đoạn [0;3]?
Trả lời:
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời:
Tính tổng các giá trị của tham số m để hàm số y=31x3−mx2+(m2−4)x+3 đạt cực đại tại x=3.
Trả lời: