Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=x3−x2−x+3 nghịch biến trên khoảng nào sau đây?
Cho đồ thị (C) của hàm số y=−x3+3x2−5x+2. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng xét dấu đạo hàm như hình vẽ.
Hàm số y=f(x) có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Khẳng định nào sau đây đúng?
Đường thẳng y=ax+b với a,b∈R và a=0 là tiệm cận xiên của đồ thị hàm số y=f(x). Mệnh đề nào sau đây đúng?
Hình vẽ trên là bảng biến thiên của hàm số nào sau đây?
Hệ số góc của tiếp tuyến với đồ thị hàm số y=x3+x tại điểm M(−1;0) là
Số giao điểm của đồ thị hàm số y=−2x4+x2+23 và trục hoành là
Giá trị lớn nhất của hàm số y=−x3+3x+1 trên khoảng (0;+∞) là
Tọa độ tâm đối xứng của đồ thị hàm số y=x−12x+3 là
Cho hàm số y=sin2x+sinx+1sinx+1. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Giá trị của M−m là
Cho hàm số y=x3+3x2−mx+1 với m là tham số.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y′=3x2+6x−m. |
|
b) Với m=9, hàm số đồng biến trên khoảng (−3;1). |
|
c) Với m=−3, hàm số nghịch biến trên khoảng (−∞;−1). |
|
d) Hàm số đồng biến trên khoảng (−∞;0) khi m≤−3. |
|
Cho hàm số y=f(x) liên tục trên đoạn [−1;3] và có đồ thị như hình vẽ.
a) Hàm số y=f(x) nghịch biến trên khoảng (0;2). |
|
b) [0;2]maxf(x)=1. |
|
c) Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [−1;3]. Giá trị của M+m là 2. |
|
d) Xét hàm số g(x)=f(x+1) thì [0;2]maxg(x)=−3. |
|
Cho hàm số y=x−2x2−x−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số đã cho có 3 đường tiệm cận. |
|
b) Tiệm cận đứng của đồ thị hàm số trên là x=−2. |
|
c) y=2 là tiệm cận ngang của đồ thị hàm số đã cho. |
|
d) Tiệm cận xiên của đồ thị hàm số có hệ số góc là 1. |
|
Trong 200 gam dung dịch muối nồng độ 15%, giả sử thêm vào dung dịch x (gam) muối tinh khiết và được dung dịch có nồng độ f(x)%.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số f(x)=x+30100(x+200). |
|
b) Đạo hàm của hàm số luôn nhận giá trị âm trên khoảng (0;+∞). |
|
c) Thêm càng nhiều gam muối tinh khiết thì nồng độ phần trăm càng tăng và không vượt quá 100%. |
|
d) Tiệm cận ngang của đồ thị hàm số y=f(x) là y=100. |
|
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2;3] để hàm số y=x3−23(2m−3)x2+m+2 có cực đại và cực tiểu đồng thời hoành độ điểm cực tiểu nhỏ hơn 2?
Trả lời:
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x>1 và y>1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m.
Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0<x<2000), tổng số tiền doanh nghiệp thu được là F(x)=2000x−x2 (chục nghìn đồng) và tổng chi phí doanh nghiệp bỏ ra là G(x)=x2+1440x+50 (chục nghìn đồng). Công ty cũng phải chịu mức thuế phụ thu cho một đơn vị sản phẩm bán được là t (chục nghìn đồng), (0<x<300). Mức thuế phụ thu t (trên một đơn vị sản phẩm) là bao nhiêu nghìn đồng sao cho nhà nước thu được số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng thu được lợi nhuận nhiều nhất theo đúng mức thuế phụ thu đó? (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình vẽ bên dưới.
Phương trình f[2−f(x)]=0 có bao nhiêu nghiệm?
Trả lời: