Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=x−1x+1. Khẳng định nào sau đây đúng?
Hàm số y=3x2−2x3 đạt cực đại tại điểm xd và đạt cực tiểu tại điểm xt lần lượt là
Cho hàm số y=f(x) có đạo hàm trên R và có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Đường tiệm cận ngang của đồ thị hàm số y=x−21−3x là
Hàm số nào sau đây có bảng biến thiên như hình vẽ?
Cho hàm số y=−32x3+x2+4x−2, gọi đồ thị của hàm số là (C). Đường thẳng nào sau đây tiếp xúc với đồ thị hàm số (C)?
Cho hàm số y=f(x) xác định trên R\{1} và có bảng biến thiên như hình bên dưới.
Số nghiệm của phương trình f(x)=0 là
Giá trị lớn nhất của hàm số y=−x4+3x2+1 trên [0;2] là
Với giá trị nào của m thỏa mãn đồ thị hàm số: y=mx+22x2+6mx+4 đi qua điểm A(−1;4)?
Giá trị nhỏ nhất của hàm số y=x31−x1 khi x>0 là
Cho hàm số y=f(x)=(m2−1)x3+(m−1)x2−x+4 với m là tham số thực.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) f(1)>0∀m. |
|
b) Với m=−1, hàm số nghịch biến trên R. |
|
c) Với m>1 hoặc m<−1, hàm số đồng biến trên R. |
|
d) Có hai giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (−∞;+∞). |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=1−x2x+2.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có tập xác định D=(−1;1). |
|
b) Đồ thị hàm số có 2 đường tiệm cận ngang là y=1 và y=−1. |
|
c) Đồ thị hàm số có 2 đường tiệm cận đứng là x=1 và x=−1. |
|
d) Đồ thị hàm số có tất cả 3 đường tiệm cận. |
|
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=t+526t+10 (với f(t) được tính bằng nghìn người). Coi y=f(t) là một hàm số xác định trên nửa khoảng [0;+∞).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Dân số của thị trấn đó vào năm 2025 là 34 nghìn người. |
|
b) Đạo hàm của hàm số luôn nhận giá trị âm trên khoảng (0;+∞). |
|
c) Đồ thị hàm số y=f(t) có đường tiệm cận ngang là y=26. |
|
d) Dân số của thị trấn đó không thể vượt quá 26 nghìn người. |
|
Tính tổng các giá trị của m để hàm số y=−2x+2+mx2−4x+7 đạt cực tiểu tại x=3.
Trả lời:
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x>1 và y>1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m.
Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Một phần lát cắt của dãy núi có độ cao tính bằng mét được mô tả bởi hàm số y=h(x)=−13200001x3+35209x2−4481x+840 với 0≤x≤2000. Biết đỉnh của lát cắt dãy núi nằm ở độ cao h (m) thuộc đoạn [1000;2000]. Tính h. (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0<x<2000), tổng số tiền doanh nghiệp thu được là F(x)=2000x−x2 (chục nghìn đồng) và tổng chi phí doanh nghiệp bỏ ra là G(x)=x2+1440x+50 (chục nghìn đồng). Công ty cũng phải chịu mức thuế phụ thu cho một đơn vị sản phẩm bán được là t (chục nghìn đồng), (0<x<300). Mức thuế phụ thu t (trên một đơn vị sản phẩm) là bao nhiêu nghìn đồng sao cho nhà nước thu được số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng thu được lợi nhuận nhiều nhất theo đúng mức thuế phụ thu đó? (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một công ty chuyên sản xuất dụng cụ thể thao nhận được đơn đặt hàng sản xuất 8000 quả bóng rổ. Công ty có một số máy móc, mỗi máy có khả năng sản xuất 30 bóng rổ trong một giờ. Chi phí thiết lập mỗi máy là 200 nghìn đồng. Sau khi thiết lập, quá trình sản xuất sẽ diễn ra hoàn toàn tự động và chỉ cần có người giám sát. Chi phí trả cho người giám sát là 192 nghìn đồng mỗi giờ. Công ty cần sử dụng bao nhiêu máy móc để chi phí hoạt động đạt mức thấp nhất?
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình bên dưới.
Phương trình f′[f(x)−2]=0 có bao nhiêu nghiệm?
Trả lời: