Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đồ thị như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
Hàm số y=f(x) có đạo hàm là f′(x)=x2(x+1)2(2x−1). Số điểm cực trị của hàm số đã cho là
Giá trị lớn nhất của hàm số y=−x3+3x trên đoạn [0;2] là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−1;2] là
Đồ thị hàm số y=x−1x+2 có bao nhiêu đường tiệm cận?
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Trong không gian Oxyz, vectơ đơn vị trên trục Oy là
Trong bốn hàm số dưới đây, hàm số nào có bảng biến thiên như hình vẽ?
Cho hàm số y=f(x)=x2+1. Số nghiệm của phương trình f(x+3)=1 là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hình chóp S.ABC có SA=1, SB=2, SC=3, ASB=60∘, BSC=90∘,CSA=120∘. Giá trị cos(SA,BC) (làm tròn đến hàng phần trăm) bằng
Đồ thị hàm số y=x−12x2−x−3 cắt trục hoành tại bao nhiêu điểm phân biệt?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Một bể chứa 3000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 25 gam muối cho một lít nước với tốc độ 20 lít/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Sau một giờ bơm thì khối lượng muối trong bể là 30 (kg) |
|
b) Thể tích lượng nước trong bể sau thời gian t phút là 3000+20t (lít) |
|
c) Giả sử nồng độ muối trong nước trong bể sau t phút được được xác định bởi một hàm số f(t) trên [0;+∞) (gam/ lít) thì đường tiệm cận ngang của đồ thị hàm số y=f(t) là đường thẳng y=20. |
|
d) Khi t càng lớn thì nồng độ muối trong bể tiến gần đến 25 gam/lít. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hình lăng trụ tam giác ABC.A′B′C′.
a) AA′+BB′=2CC′. |
|
b) AB−CC′−A′B′=BB′. |
|
c) BB′+2BC+AA′=2BC′. |
|
d) AB′+BA+2CC′=3BB′. |
|
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 300 km, vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v)=cv3t, trong đó c là hằng số và E tính bằng Jun. Tính vận tốc bơi của cá (km/h) khi nước đứng yên để năng lượng tiêu hao ít nhất.
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Một xí nghiệp A chuyên cung cấp sản phẩm S cho nhà phân phối B. Hai bên thỏa thuận rằng, nếu đầu tháng B đặt hàng x tạ sản phẩm S thì giá bán mỗi tạ sản phẩm S là P(x)=6−0,0005x2 (triệu đồng) (x≤40). Chi phí A phải bỏ ra cho x tạ sản phẩm S trong một tháng là C(x)=10+3,5x (triệu đồng) và mỗi sản phẩm bán ra phải chịu thêm mức thuế là 1 triệu đồng. Trong một tháng B cần đặt hàng bao nhiêu tạ sản phẩm S thì A có được lợi nhuận lớn nhất, kết quả làm tròn đến hàng phần mười.
Trả lời:
Trong hóa học cấu tạo của phân tử ammoniac (NH3) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác H1H2H3 với H1,H2,H3 là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H−N−H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm H1,H2,H3 (chẳng hạn như H1NH2) , được gọi là góc liên kết của phân tử NH3. Góc này xấp xỉ 120∘. Trong không gian Oxyz, cho một phân tử NH3 được biểu diễn bởi hình chóp tam giác đều N.H1H2H3 với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm N thuộc trục Oz, ba nguyên tử hydrogen ở các vị trị H1,H2,H3 trong đó H1(0;−3;0) và H2H3 song song với trục Ox. Tính khoảng cách giữa nguyên tử nitrogen với mỗi nguyên tử hydrogen. (làm tròn kết quả đến hàng phần trăm)
Trả lời:
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được đặt vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA;EB;EC;ED bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc α.
Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết các lực căng F1;F2;F3;F4 đều có cường độ là 4800N, trọng lượng của cả khung sắt chứa xe ô tô là 72006N. Tính sinα. (làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời: