Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Với góc x bất kì, khẳng định nào sau đây đúng?
Giá trị lớn nhất của hàm số y=3sinx là
Chu kì của hàm số y=−5sin(2026x) là
Nghiệm của phương trình tan(x+1)=1 là
Dãy số nào sau đây là một cấp số cộng?
Số hạng thứ ba của dãy số {u1=2022un+1=un−n bằng
Cho cấp số cộng (un) có số hạng đầu bằng 2, công sai bằng −3. Tổng 99 số hạng đầu của cấp số cộng đã cho bằng
Trong các công thức sau, công thức nào sai?
Chu kì tuần hoàn của hàm số y=cotx+2025 là
Tập nghiệm của phương trình tanx=3 là
Đường cong trong hình vẽ là đồ thị của một trong bốn hàm số nào sau đây?
Cho hàm số f(x)=sin2x+cosx−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số D=R. |
|
b) f(−π)=−f(π). |
|
c) f(−x)=f(x). |
|
d) Hàm số đã cho là hàm số chẵn. |
|
Cho phương trình lượng giác 2sin(x−12π)+3=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sin(x−12π)=sin(3π). |
|
b) Phương trình có nghiệm là: x=4π+k2π;x=127π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm âm lớn nhất bằng −4π. |
|
d) Số nghiệm của phương trình trong khoảng (−π;π) là hai nghiệm. |
|
Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn ra. Thần đèn cho chàng ba điều ước. Aladin ước 2 điều đầu tiên tùy thích, nhưng điều ước thứ 3 của chàng là: "Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay". Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Ngày thứ hai Aladin ước 6 điều. |
|
b) Ngày thứ ba Aladin ước 12 điều. |
|
c) Ngày thứ tư Aladin ước 48 điều. |
|
d) Sau 10 ngày gặp Thần đèn, Aladin ước tất cả 3269 điều ước. |
|
Cho hàm số f(x)=∣x∣sinx.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số là D=R\{0}. |
|
b) f(−π)+f(π)=0. |
|
c) f(−x)=−f(x). |
|
d) Hàm số đã cho đối xứng qua gốc tọa độ O(0;0). |
|
Cho dãy số (un) xác định bởi {u1=1un+1=un−2(n+1) với n≥1. Tính giá trị biểu thức S=3−u13+3−u23+3−u33+...+3−u203 (làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là bao nhiêu?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hoà cho bởi công thức x(t)=Acos(ωt+φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t,A là biên độ dao động (A>0) và φ∈[−π;π] là pha ban đầu của dao động. Xét hai dao động điều hoà có phương trình: x1(t)=3⋅cos(6πt+6π) (cm) và x2(t)=3⋅cos(6πt+4π) (cm). Từ dao động tổng hợp x(t)=x1(t)+x2(t), sử dụng công thức biến đổi tổng thành tích ta tìm được pha ban đầu của dao động tổng hợp này bằng nmπ với nm là phân số tối giản có mẫu dương. Tính n−m.
Trả lời:
Tìm số nguyên m nhỏ nhất để dãy số (un) với un=n+1mn+1 là dãy số tăng.
Trả lời: