Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Góc có số đo 144∘ đổi ra rađian là
Cấp số nhân (un) có số hạng tổng quát là un=53.2n−1,n∈N∗. Số hạng đầu tiên và công bội của cấp số nhân đó là
Dãy số nào sau đây không phải các số hạng đầu của một cấp số nhân?
Cho cấp số cộng (un) biết u1=3, công sai d=−2. Giá trị của u2 bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Phương trình cotx=3 có nghiệm là
Hàm số nào dưới đây có đồ thị là đường cong như hình vẽ?
Giá trị lớn nhất của hàm số y=3sinx là
Góc có số đo 24π đổi sang độ là (gợi ý: 1∘=60′)
Cho dãy số (un) là một cấp số cộng có u1=3 và công sai d=4. Biết tổng của n số hạng đầu tiên của dãy số (un) là Sn=253. Giá trị n bằng
Số nghiệm của phương trình trên đoạn cosx=sinx trên đoạn [−32π;35π] là
Tổng n số hạng đầu tiên của một cấp số cộng cho bởi Sn=3n2−n. Công sai của cấp số cộng đó là
Cho phương trình lượng giác 2−2sin(45∘−2x)=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương với sin(45∘−2x)=sin45∘. |
|
b) Đồ thị hàm số y=2−2sin(45∘−2x) cắt trục hoành tại gốc tọa độ. |
|
c) Phương trình có nghiệm là: x=−k180∘;x=−45∘−k180∘,(k∈Z). |
|
d) Trên khoảng (−2π;2π) phương trình đã cho có một nghiệm. |
|
Khi kí kết hợp đồng lao động với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng 18 triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là 24 triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng 1,8 triệu đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong phương án 1: dãy số tiền lương là cấp số cộng có số hạng đầu tiên là u1=120, công sai d1=18. |
|
b) Trong phương án 1: tiền lương người lao động nhận được trong năm thứ ba là 174 triệu đồng. |
|
c) Trong phương án 1: tổng tiền lương người lao động nhận được trong ba năm là 414 triệu đồng. |
|
d) Nếu kí hợp đồng lao động trong ba năm, với mong muốn nhận được tổng số tiền lương cao nhất thì người lao động nên chọn phương án 1. |
|
Cho hàm số f(x)=tanx và g(x)=cot2x−2sin2x.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định hàm số f(x) là D=R\{2π+kπk∈Z}. |
|
b) Hàm số f(x) là hàm số không tuần hoàn. |
|
c) Tập xác định hàm số g(x) là D=R\{kπk∈Z}. |
|
d) Hàm số g(x) là hàm số tuần hoàn. |
|
Cho phương trình lượng giác 2sin(x−12π)+3=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sin(x−12π)=sin(3π). |
|
b) Phương trình có nghiệm là: x=4π+k2π;x=127π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm âm lớn nhất bằng −4π. |
|
d) Số nghiệm của phương trình trong khoảng (−π;π) là hai nghiệm. |
|
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là bao nhiêu?
Trả lời:
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Cho tam giác ABC vuông tại A có cạnh AB=6,AC=8. Điểm E thuộc đoạn AC sao cho CBE=30∘, điểm D thuộc tia đối của tia BA sao cho BCD=30∘. Tính độ dài đoạn AD. (làm tròn kết quả đến hàng phần mười)
Trả lời:
Gọi n là số nghiệm của phương trình sin(2x+30∘)=23 trên khoảng (−180∘;180∘). Tìm n.
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời: