Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f′(x)=(x+1)(3−x)2. Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có bảng xét dấu f′(x) như hình vẽ:
Hàm số đã cho đạt cực đại tại
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Giá trị lớn nhất của hàm số y=−x4+4x2 trên đoạn [−1;2] bằng
Cho hàm số y=f(x)có đồ thị như hình vẽ:
Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
Đường cong ở hình dưới là đồ thị của hàm số nào?
Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Điểm nào sau đây thuộc đồ thị của hàm số y=x4−3x2−5?
Định luật vạn vật hấp dẫn của Newton được cho bởi công thức F=Gr2m1.m2. Trong đó F là lực hấp dẫn giữa hai vật thể bất kì, G là hằng số hấp dẫn, m1,m2 là khối lượng các vật, r là khoảng cách giữa chúng. Đồ thị của hàm số cho bởi công thức này có tiệm cận đứng là r=0, điều này có nghĩa là khi r dần về 0 thì lực hấp dẫn sẽ tiến đến
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Giá trị của tham số m để đồ thị hàm số y=2x−m(m+1)x−5m có tiệm cận ngang là đường thẳng y=1 là
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Hàm số đã cho nghịch biến trên R. |
|
b) Phương trình y=0 có 2 nghiệm phân biệt. |
|
c) Hàm số đã cho liên tục tại x=−2. |
|
d) Đồ thị hàm số đã cho có 2 tiệm cận đứng. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời:
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình vẽ. Tìm số nghiệm thực của phương trình f2(x)−f(x)=0.
Trả lời:
Cho hàm số y=f′(x) có đồ thị như hình vẽ.
Biết rằng hàm số y=f(2−x) đồng biến trên khoảng (a;+∞). Giá trị nguyên nhỏ nhất của a là bao nhiêu?
Trả lời: