Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Dạng 2. Các phép toán với vectơ trong không gian SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hình lăng trụ ABC.A′B′C′,M là trung điểm của BB′. Đặt CA=a,CB=b,AA′=c. Khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=d;SC=c; SD=b. Khẳng định nào sau đây đúng?
Cho hình lập phương ABCD.A1B1C1D1 có tâm O. Đẳng thức nào sau đây đúng?
Gọi I là trung điểm của AB và điểm M bất kì khác I, A, B. Khẳng định nào sau đây sai?
Trong không gian cho ba điểm M,N,P phân biệt. Tổng PM+MN là
Cho hình lập phương ABCD.A′B′C′D′. Vectơ nào sau đây có điểm đầu và điểm cuối là đỉnh của hình lập phương ABCD.A′B′C′D′ và bằng AD?
Cho hình hộp ABCD.EFGH. Khi đó AB−EH là
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Giá trị của k thích hợp điền vào đẳng thức vectơ DA+DB+DC=kDG là
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian Oxyz, cho u=(1;−1;4) và v=(3;−2;1). Khi đó u.v bằng
Cho hình lập phương ABCD.EFGH có cạnh bằng 5. Giá trị của AB.EG là
Cho hai vectơ u,v có ∣u∣=3,∣v∣=4 và góc giữa hai vectơ u,v bằng 60∘. Tích vô hướng u.v bằng
Trong không gian cho hình lập phương ABCD.A′B′C′D′ có độ dài cạnh là a. Gọi O là giao điểm của BD và AC.
a) A′C−A′A=AB+AD. |
|
b) BC′=A′A+B′C′. |
|
c) C′O=C′A′−OA′. |
|
d) A′D.A′B=0. |
|
Cho hai vectơ a và b thỏa mãn ∣a∣=2; ∣b∣=5, góc giữa hai vectơ a và b bằng 60∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) (a,−2b)=60∘. |
|
b) a.b=5. |
|
c) ∣a−2b∣=84. |
|
d) Biết vectơ v ngược hướng với vectơ a−2b và ∣v∣=421. Gọi α là góc giữa hai vectơ v và a. Khi đó cosα=8421. |
|
Cho tứ diện ABCD có AB=AC=AD=BC=BD=a, ΔBCD vuông cân tại B. Gọi M, N lần lượt là trung điểm các cạnh AB, CD.
a) AB+DC=AC+DB. |
|
b) 2MN=AC+BD. |
|
c) AB.BC=21a2. |
|
d) (AD,BC)=120∘. |
|