K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

ta có : \(\left|z^2+4\right|=2\left|z\right|\Leftrightarrow\left|\left(a+bi\right)^2+4\right|=2\left|a+bi\right|\)

\(\Leftrightarrow\left|a^2-b^2+4+2abi\right|=2\left|a+bi\right|\)

\(\Leftrightarrow\sqrt{\left(a^2-b^2+4\right)^2+\left(2ab\right)^2}=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow\left(a^2-b^2+4\right)^2+\left(2ab\right)^2=4\left(a^2+b^2\right)\)

\(\Leftrightarrow a^4+b^4+16-2a^2b^2-8b^2+8a^2+4a^2b^2=4a^2+4b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-4a^2-4b^2+4=8b^2-8a^2-12=P\)

\(\Leftrightarrow P=\left(a^2+b^2\right)^2-4\left(a^2+b^2\right)+4\)

\(\Leftrightarrow P=\left(a^2+b^2-2\right)^2=\left(\left|z\right|^2-2\right)^2\)

vậy \(P=\left(\left|z\right|^2-2\right)^2\)

NV
3 tháng 5 2021

\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)

\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)

\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)

2.

Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?

17 tháng 7 2018

ta có : \(\left|z+1+i\right|=\left|z+2i\right|\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+a^2+\left(b+2\right)^2\)

\(\Leftrightarrow b=a-1\)

khí đó : \(P=\left|z-2-3i\right|+\left|z+1\right|=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}+\sqrt{\left(a+1\right)^2+b^2}\)

\(\Leftrightarrow P=\sqrt{\left(a-2\right)^2+\left(a-4\right)^2}+\sqrt{\left(a+1\right)^2+\left(a-1\right)^2}\ge\sqrt{\left(2a-1\right)^2+\left(2a-5\right)^2}\)

dấu "=" xảy ra khi \(\dfrac{a-2}{a+1}=\dfrac{a-4}{a-1}=k>0\) \(\Leftrightarrow a\in\varnothing\) \(\Rightarrow\) không có giá trị của \(P=a+2b\)

2 tháng 10 2017

21 tháng 10 2019

Đáp án A.

23 tháng 2 2019

9 tháng 9 2018

Chọn C

20 tháng 4 2021

undefined

27 tháng 7 2018

Đáp án D.

29 tháng 4 2019

Chọn B.