\(xy+yz+xz\ge3+\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

\(BĐT\Leftrightarrow\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{xyz}\)\(\ge3+\sqrt{x^2.\frac{x+y+z}{xyz}+1}+\sqrt{y^2.\frac{x+y+z}{xyz}+1}\)

\(+\sqrt{z^2.\frac{x+y+z}{xyz}+1}\)

Ta có biến đổi sau:

\(VT=\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz}{xyz}\)\(=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}+3\)

\(VP=\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)

Nên bđt đã cho tương đương với:

\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)\(\ge\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)

Đúng theo bđt cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)

3 tháng 6 2019

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\)\(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)

\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)

17 tháng 8 2019

\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)

Áp dụng BDT Cô-si với 2 số không âm:

\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)

Vậy.......

5 tháng 11 2019

Áp dụng bất đẳng thức Cauchy 

\(1+x^3+y^3\ge3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự :
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\frac{3}{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\sqrt{\frac{3}{xz}}\)

Cộng theo vế các bất đẳng thức và thu lại ta được :
\(VT\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\ge3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\)

( Cauchy )

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

6 tháng 11 2019

Cách khác nè bạn

Xét bđt phụ \(a^3+b^3\ge ab\left(a+b\right)\left(a,b>0\right)\)

Thật vậy\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)

Áp dụng ta có \(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{xy}\sqrt{x+y+z}}{xy}=\sqrt{\frac{x+y+z}{xy}}\)

T tự ta có:\(VT\ge\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}+\frac{1}{xy}\right)=\sqrt{x+y+z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\left(xyz=1\left(gt\right)\right)\)

NV
6 tháng 3 2020

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(VT=\sum\frac{\sqrt{1+a^6+b^6}}{a^3b^3}\ge\sum\frac{\sqrt{3\sqrt[3]{a^6b^6}}}{a^3b^3}=\sqrt{3}\left(\frac{1}{a^2b^2}+\frac{1}{b^2c^2}+\frac{1}{c^2a^2}\right)\)

\(VT\ge\sqrt{3}.3\sqrt[3]{\frac{1}{a^2b^2.b^2c^2.c^2a^2}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)

\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)

\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)

=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)

10 tháng 8 2017

\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}\)( Vì xyz=1 nên \(\sqrt{xyz}=1\))

\(P=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xy}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{x}+1+\sqrt{xy}}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{xyz}}{\sqrt{x}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=\frac{\sqrt{y}+1+\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=1\)