![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
dấu <=> thứ 4 em làm nhầm rồi, 4x - 6x = - 2x chứ! Rồi tiếp theo em nên đưa về hằng đẳng thức chứ giải vậy ko đc đâu.
![](https://rs.olm.vn/images/avt/0.png?1311)
A = ( x + 1 )( x2 - 3x - 2 ) + ( x + 1 )( x2 - x + 1 )
= ( x + 1 )[ ( x2 - 3x - 2 ) + ( x2 - x + 1 ) ]
= ( x + 1 )( x2 - 3x - 2 + x2 - x + 1 )
= ( x + 1 )( 2x2 - 4x - 1 )
= x( 2x2 - 4x - 1 ) + 2x2 - 4x - 1
= 2x3 - 4x2 - x + 2x2 - 4x - 1
= 2x3 - 2x2 - 5x - 1
B = ( x - y )( x2 + xy + y2 ) - ( x + y )( x2 + 2x + y2 )
= x3 - y3 - ( x3 + 2x2 + xy2 + x2y + 2xy + y3 )
= x3 - y3 - x3 - 2x2 - xy2 - x2y - 2xy - y3
= -2y3 - 2x2 - xy2 - x2y - 2xy
a) \(A=\left(x+1\right)\left(x^2-3x-2\right)+\left(x+1\right)\left(x^2-x+1\right)\)
\(=x.x^2-x.3x-x.2+1.x^2-1.3x-1.2+x.x^2-x.x+x.1+1.x^2-1.x+1.1\)
\(=x^3-3x^2-2x+x^2-3x-2+x^3-x^2+x+x^2-x+1\)
\(=\left(x^3+x^3\right)+\left(-3x^2+x^2-x^2+x^2\right)+\left(-2x-3x+x-x\right)+\left(-2+1\right)\)
\(=2x^3-2x^2-5x-1\)
b) \(B=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2+2x+y^2\right)\)
\(=x.x^2+x.xy+x.y^2-y.x^2-y.xy-y.y^2-x.x^2-x.2x-x.y^2+y.x^2+y.2x+y.y^2\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3-x^3-2x^2-xy^2+xy^2+2xy+y^3\)
\(=\left(x^3-x^3\right)+\left(x^2y-x^2y\right)+\left(xy^2-xy^2-xy^2+xy^2\right)-2x^2+2xy+\left(-y^3+y^3\right)\)
\(=-2x^2+2xy\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)
b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a: \(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=\left(1-1\right)\left(1-8\right)=0\)
b: \(=x^3-3x^2+3x-1-4x^3+4x+3\left(x^3-1\right)\)
\(=-3x^3-3x^2+7x-1+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot4-14-4=-30\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)
b ) \(\left(4x^4y^4-12x^2y^2\right):4x^2y^2=x^2y^2-3\)
c ) \(\frac{3x^2-1}{2x}+\frac{x^2+1}{2x}=\frac{3x^2-1+x^2+1}{2x}=\frac{4x^2}{2x}=2x\)
d ) \(\frac{x^2}{x-1}+\frac{2x}{1-x}+\frac{1}{x-1}=\left(\frac{x^2}{x-1}+\frac{1}{x-1}\right)+\frac{2x}{1-x}\)
\(=\frac{x^2+1}{x-1}+\frac{2x}{1-x}=\frac{x^2+1}{x-1}+\frac{-2x}{x-1}=\frac{x^2+1-2x}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
a) .......=x2-x-2
b) .........=x2y2-3
c) .......=(3x2-1+x2+1)/2x=4x2/2x=2x
d) x2 /(x-1)+(-2x)/(x-1)+1/(x-1)=(x2-2x+1)/(x-1)=(x-1)2/(x-1)=x-1
e)...
x-y=4
=> x2-2xy+y2=16
<=> 106-2xy =16 (vì x2+y2 =106)
=>xy=(106-16)/2=45
ta có x3 -y3 =(x-y)(x2+xy+y2 )
=4(106+45)=604
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.x^4+x^3-x^2-x\)
\(=\left(x^4-x^2\right)+\left(x^3-x\right)=x^2\left(x^2-1\right)+x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\)
\(2.x^5-x^3+x^2-1\)
\(=\left(x^5+x^2\right)-\left(x^3+1\right)=x^2\left(x^3+1\right)-\left(x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^2-1\right)\)
\(3.x^4+2x^3y^2+y^2\)( ko biết làm )
\(4.x+y\left(x-1\right)-1\)
\(=\left(x-1\right)+y\left(x-1\right)=\left(x-1\right)\left(1+y\right)\)
\(5.a^3+a^2b-a^2c-abc\)
\(=\left(a^3-a^2c\right)+\left(a^2b-abc\right)=a^2\left(a-c\right)+ab\left(a-c\right)\)
\(=\left(a-c\right)\left(a^2+ab\right)\)
\(6.a^3-b^3+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 : Tìm x :
1. \(A=x^2+4x-2\)
\(A=x^2+2.x.2+2^2-2^2-2\)
\(A=\left(x^2+4x+2^2\right)-4-2\)
\(A=\left(x+2\right)^2-6\)
\(\left(x+2\right)^2-6\ge-6\)
MIn A= -6 khi \(\left(x+2\right)^2=0\)
=> \(x+2=0hayx=-2\)
Vậy x=2
những câu tiếp theo làm tg tự như thế nhé
Câu 1:
a) Ta có: \(A=x^2+4x-2\)
\(=x^2+4x+4-6\)
\(=\left(x+2\right)^2-6\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: x=-2
b) Ta có: \(B=2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)
\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)
\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)
\(=2\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: x=1
c) Ta có: \(C=x^2+y^2-4x+2y+5\)
\(=x^2-4x+4+y^2+2y+1\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy: x=2 và y=-1
Câu 2:
a) Ta có: \(A=-x^2+6x+5\)
\(=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)\)
\(=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left(x-3\right)^2+14\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3
b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)
Ta có: \(\left(3y-1\right)^2\ge0\forall y\)
\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)
Từ (1) và (2) suy ra
\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\) và \(y=\frac{1}{3}\)
Câu 3:
a) Ta có: \(x^2+y^2-2x+4y+5=0\)
\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: x=1 và y=-2
b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy: x=3 và y=-2