K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

y = \(2\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{31.31}\right)\)

 

3/2y =\(\frac{3}{2}.2\left(\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{31.34}\right)\)

\(\frac{3}{2}y=3\left(\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{31.34}\right)\)

\(\frac{3}{2}y=\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{31.34}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+..+\frac{1}{31}-\frac{1}{34}\)]

3/2y = 1 - 1/34

3/2y = 33/34

y      = 33/34 : 3/2

y       =

Đúng cho mình nha

17 tháng 3 2016

\(\frac{15}{16}\)nha bạn

úm ba la xin tích

17 tháng 3 2016

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)

\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)

\(=1.\frac{15}{16}=\frac{15}{16}\)

23 tháng 9 2020

 mn ơi \(2ab=200+ab\) nha không phải \(2\cdot ab\)

23 tháng 9 2020

làm :                                                                                                                                                                                                                  

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{3}{8}\)

b, \(ab\cdot10-ab=2ab\)

\(ab\cdot10-ab\cdot1=2ab\)

\(ab\cdot\left(10-1\right)=2ab\)

\(ab\cdot9=2ab\)

\(ab\cdot9=200+ab\cdot1\)

\(ab\cdot9-ab\cdot1=200\)

\(ab\cdot\left(9-1\right)=200\)

\(ab\cdot8=200\)

\(ab=200:8\)

\(ab=25\)

11 tháng 2 2018

Gọi \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{22.25}\)

\(\Leftrightarrow\)\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{22.25}\)

\(\Leftrightarrow\)\(3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)

\(\Leftrightarrow\)\(3A=1-\frac{1}{25}\)

\(\Leftrightarrow\)\(3A=\frac{24}{25}\)

\(\Leftrightarrow\)\(A=\frac{24}{25}:3\)

\(\Leftrightarrow\)\(A=\frac{24}{25}.\frac{1}{3}\)

\(\Leftrightarrow\)\(A=\frac{8}{25}\)

Vậy \(A=\frac{8}{25}\)

11 tháng 2 2018

Đặt \(C=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}\)

\(\Rightarrow3C=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{22.25}\)

\(\Rightarrow3C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)

\(\Rightarrow3C=1-\frac{1}{25}=\frac{24}{25}\)

\(\Rightarrow C=\frac{24}{25}:3=\frac{8}{25}\)

Vậy \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}=\frac{8}{24}\)

12 tháng 10 2016

bai nay de thui

nhung bay gio mk ban

luc nao ranh mk lam

cho nha

minhpham@gmail.com

12 tháng 10 2016

To cu tuong day kien thuc lop 6

26 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)

Cái còn lại tự CM

28 tháng 7 2020

A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9

Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên 

1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10

Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10

= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10

= 1/2- 1/10

= 2/5

Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8

Vậy....

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!