Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+.....+\left(1+2+3+4+......+100\right)}{\left(1.100+2.99+3.98+.......+99.2+100.1\right).2013}\)
\(=\frac{1.100+2.99+3.98+......+99.2+100.1}{\left(1.100+2.99+3.98+.....+99.2+100.1\right).2013}\)
\(=\frac{1}{2013}\)
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)
A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)
A = 5( 1 - 1/100)
A = 5 . 99/100
A = 99/20
** k mk nha!
\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)
Câu A
Ta có (1/2)A = 1/22 + 1/23 + ... + 1/2100 + 1/2101
=> (1/2)A - A = - (1/2)A = (1/22 + 1/23 + ... + 1/2100 + 1/2101) - (1/2 + 1/22 + ... + 1/2100 )
= 1/2101 - 1/2
=> A = 1 - 1/2100
Câu B
Ta có 1/(1x2) = 1/1 - 1/2
1/(2.3) = 1/2 - 1/3
.................................
1/(99.100) = 1/99 - 1/100
=> B = 1/1 - 1/2 + 1/2 - 1/3 +.... +1/99 - 1/100
= 1 - 1/100
=99/100