Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>y=1,25x3,14=3,925
b: =>y:0,24=15-7,8=7,2
hay y=1,728
c: =>10y=36,7
hay y=3,67
d: =>6:y=1,5
hay y=4
e: =>4y+0,2y=44,1
=>4,2y=44,1
hay y=10,5
a, ( y - 21 x 13 ) : 11 = 30
y - 273 = 30 x 11
y - 273 = 330
y = 330 + 273
y = 603
b, ( 627 - 138 ) : ( y : 2 ) = 163
489 : ( y : 2 ) = 163
y : 2 = 489 : 163
y : 2 = 3
y = 3 x 2 =6
c. 96 - ( 3,75 : y ) = 94,5
3,75 : y = 96 - 94,5
3,75 : y = 1,5
y = 3,75 : 1,5 = 2,5
d, 3,16 : ( y x 0,4 ) = 7,9
y x 0,4 = 3,16 : 7,9 = 0,4
y = 0,4 : 0,4 = 1
a. = 0,25 : 0,25 + 0,4 x 2,5 + 0,2 x 5
= 1 + 1 + 1
= 3
b. y x ( 7 + 1 + 12 - 6 - 4) = 45
y x 9 = 45
=> y = 5
Đem x -2, 5 và y + 2,5 thì đc kết quả bằng nhau do đó có số x lớn hơn số y
Hiệu hai số x, y là:
2,5 + 2, 5 = 5
Tổng hai số x, y là :
4 x ( 5 + 3 +3 ) = 44
Số x là:
( 44 + 5 ) : 2 = 24,5
Số y là:
(44-5 ) : 2 = 19,5
\(y+y.\frac{1}{3}.\frac{9}{2}+y.\frac{7}{2}=25\)
\(y+y.6+y.\frac{7}{2}=25\)
\(y.\left(1+6+\frac{7}{2}\right)=25\)
\(y.\frac{21}{2}=25\)
\(y=25:\frac{21}{2}\)
\(y=25.\frac{2}{21}\)
\(y=\frac{50}{21}\)
\(y.5+y.3+y+y=50\)
\(y.\left(5+3+1+1\right)=50\)
\(y.10=50\)
\(y=5\)
a, 5y+5=17-2y+2
5y+2y=17+2-5
7y=14
y=2
b,(3y+1):5=3
3y+1=3.5
3y+1=15
3y=15-1
3y=14
y=14/3
a, 5y+5=17-2y+2
5y+2y=17+2-5
7y=14
y=2
b,(3y+1):5=3
3y+1=3.5
3y+1=15
3y=15-1
3y=14
y=\(\frac{14}{3}\)
c,
15+5y=5
5y=5-15
5y=-10
y=(-10):5
y=-2
d, 17+4y=2y+19
4y-2y=19-17
2y=2
y=2:2
y=1
Chú ý: 5y có nghĩa là 5 nhân y
dấu chấm (.) thay bằng dấu nhân (x) vì mik nghĩ đây là toán lớp 6
Nhớ tk nha
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)