K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(=\dfrac{5}{9}\cdot\dfrac{9}{10}+\dfrac{4}{9}\cdot\dfrac{9}{10}+1\)

\(=\dfrac{9}{10}+1=\dfrac{19}{10}\)

5 tháng 12 2021

Thé 5/9 với 4/9

16 tháng 2 2017

xin lỗi nhé nhưng lớp mk chưa kiểm tra

16 tháng 2 2017

đại hay hình bn ?

25 tháng 7 2017

Hehehe!oaoa Dễ tek mà ko làm đc!bucqua

Nhớ mối thù năm xưa chứ e.eoeoleuleu

25 tháng 7 2017

sí sào, ai thèm mày giúp.

hiha

28 tháng 9 2017

Ta có: \(1^2+2^2+3^2+...+10^2=358\)

\(S=2^2+4^2+6^2+...+20^2\)

\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)

\(=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)

\(=2^2\left(1^2+2^2+3^2+...+10^3\right)\)

\(=2^2.385\)

\(=4.385=1540\)

28 tháng 9 2017

\(S=2^2+4^2+6^2+....+20^2\)

\(S=\left(1.2\right)^2+\left(2.2\right)^4+\left(2.3\right)^2+...+\left(2.10\right)^2\)

\(S=1^2+2^2+2^2+2^2+2^2+3^2+...+2^2+10^2\)

\(S=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)

\(S=2^2.385\)

\(S=4.385\)

\(\Rightarrow S=1540\)

Vậy...

6 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y+x-y}{5+8}=\dfrac{2x}{13}=\dfrac{4x}{26}\)

Ta có:

\(\dfrac{x+y}{5}=\dfrac{xy}{26};\dfrac{x+y}{5}=\dfrac{4x}{26}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{4x}{26}\Rightarrow y=4\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y-x+y}{5-8}=\dfrac{2y}{-3}\)

Ta có:

\(\dfrac{x-y}{8}=\dfrac{xy}{26};\dfrac{x-y}{8}=\dfrac{2y}{-3}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{2y}{-3}\Rightarrow-3xy=52y\Leftrightarrow-3x=52\Rightarrow x=\dfrac{-52}{3}\)

Vậy \(x=-\dfrac{52}{3};y=4\)

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D

21 tháng 9 2017

Cho mk xin cái đề bài

21 tháng 9 2017

undefined

19 tháng 8 2017

không có câu hỏi sao trả lời

19 tháng 8 2017

Ta có hình vẽ:

x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)

\(\widehat{xOy}\)\(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)

\(\widehat{x'Oy}\)\(\widehat{x'Oy'}\) kề bù nên:

\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)

\(\Rightarrow\widehat{xOy}+180^0=297^o\)

\(\Rightarrow\widehat{xOy}=117^o\)

\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)

\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)

\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên

\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)

Vậy...