
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. Xét 2 TG AMC và DMB, ta có:
AM=DM(M là tđiểm của AD); BM=CM(Mlaf tđiểm BC); BMD=AMC(2 góc Đối đỉnh)
=>TG AMC=TG DMB(c.g.c)
b. Xét 2 TG AMB và CMD, ta có:
AM=DM(gt);BM=CM(gt); AMB=CMD(đđ)
=>TG AMB=TG CMD(c.g.c)
=>BAM=CDM(2 góc tương ứng)
mà chúng lại ở vị trí slt=>AB//CD.
c. sory!!! I don't know

a/ Xét tam giác AKB và tam giác AKC có
AB=AC(gt)
BK=CK(K là trung điểm của BC)
AK là cạnh chung
Vậy tam giác AKB=tam giác AKC(c-c-c)
b/Ta có tam giác AKB=tam giác AKC (c/m trên)
--> góc AKB=góc AKC
Mà AKB+AKC=180(kề bù)
--> góc AKB=góc AKC=90 độ
Vậy AK vuông góc với BC
c/ Sai đề Làm sao mà AC//AK được? (vì nó hội tụ tại điểm A)

Gọi By' là tia đối của tia By
yBC = 1300
xCB = 1300
=> yBC = xCB
mà 2 góc này ở vị trí so le trong
=> By // Cz (1)
=> xCB + y'BC = 1800
1300 + y'BC = 1800
y'BC = 1800 - 1300
y'BC = 500
Ta có:
y'BC + y'BA = ABC
500 + y'BA = 1200
y'BA = 1200 - 500
y'BA = 700
y'BA + xAB
= 700 + 1100
= 1800
=> y'BA và xAB kề bù
mà 2 góc này ở vị trí trong cùng phía
=> Ax // By (2)
Từ (1) và (2)
=> Ax // By // Cz

A B C M
- Vẽ hình ko chính xác cho lắm!
Giải
a/ Xét ΔABM và ΔACM ta có:
AB = AC (GT)
AM: cạnh chung
MB = MC (GT)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{AMB}=\widehat{AMC}\)
Lại có: \(\widehat{AMB}\) + \(\widehat{AMC}\) = 1800 (kề bù)
=> \(\widehat{AMB}=\widehat{AMC}\) = 1800 : 2 = 900
=> AM ⊥ BC

Ta có hình vẽ:
A B C x y H
a) Xét Δ ABC có: BAC + ACB + ABC = 180o (tổng 3 góc của Δ)
=> BAC + 45o + 45o = 180o
=> BAC + 90o = 180o
=> BAC = 180o - 90o = 90o
b) Ta có: BAC + BAx = 180o (kề bù)
=> 90o + BAx = 180o
=> BAx = 180o - 90o = 90o
Vì Ay là phân giác của BAx nên \(xAy=yAB=\frac{BAx}{2}=\frac{90^o}{2}=45^o\)
Có: yAB = ABC = 45o
Mà yAB và ABC là 2 góc ở vị trí so le trong nên Ay // BC (đpcm)
c) Vì Ay // BC; \(AH\perp Ay\) => \(BC\perp Ay\)
=> AHC = 90o
=> HAC + ACH = 90o
=> HAC + 45o = 90o
=> HAC = 90o - 45o
=> HAC = 45o = ABC (đpcm)

Ta có :
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcz-abz}{b^2}=\frac{acy-bcz}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcz}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=> abz - acy = 0 => abz = acy => bz = cy (1)
bcx - abz = 0 => bcx = abz => cx = az (2)
acy - bcx = 0 => acy = bcx => ay = bx
Chuyển đổi vế 1 và 2 ta có :
\(bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\left(a\right)\)
\(cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\left(b\right)\)
Từ a và b
=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (ĐPCM)

a/ Xét tam giác ABE và ACD:
Góc A: chung
AB=AC (gt)
AE=AD ( do AB= AC nên trung điểm của AB=AC bằng nhau)
=> Hai tam giác ABE=ACD ( c.g.c)
b/ Do tam giác ABE=ACD nên BE= CD ( hai cạnh tương ứng)
c/ Do góc ABC= ACB ( ABC cân A)
-> Góc ABE=ACE ( do ABE=ACD)
=> ABC-ABE=ACB-ACE
Vậy: Tam giác KBC cân K ( do góc KBC=KCB)
d/ Bạn tự làm nhé, vẽ hình ra rồi làm, ở đây vẽ hình là đợi duyệt lâu lắm
Xét tam giác ABE và tam giác ACD có:
góc A chung
AB=AC(tam giác ABC cân tại A)
AD=AE(trung điểm của 2 cạnh bằng nhau)
=> tam giác ABE=tam giác ACD(c-g-c)

a) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right).\)
b) Theo câu a) ta có \(\Delta ABM=\Delta ACM.\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> \(AM\) là tia phân giác của \(\widehat{BAC}.\)
c) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
Có \(AM\) là đường phân giác (cmt).
=> \(AM\) đồng thời là đường cao của \(\Delta ABC.\)
=> \(AM\perp BC\left(đpcm\right).\)
Chúc bạn học tốt!