Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEB=góc AHB=90 độ
=>ABHE nôi tiếp
b: Gọi N là trung điểm của AB
=>AN=HN=EN=BN
MN là đường trung bình của ΔABC
=>MN//AC
HE vuông góc AC
=>HE vuông góc MN
=>MN là trung trực của HE
=>ME=MH
Câu 2:
a, bạn tự vẽ được nhớ tìm tọa dộ nhé
x 0 0
y 0 0
b, Vì tung độ của điểm nằm trên P có hoành độ bằng 8
=> x = 8
Thay x = 8 vào y = 1/2x^2 ta được :
\(y=\dfrac{1}{2}.64=32\)
Bài 4:
a) Ta có: \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1\)
\(=x+\sqrt{x}-2\sqrt{x}\)
\(=x-\sqrt{x}\)
5:
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
b: \(MA=\sqrt{OM^2-OA^2}=R\sqrt{3}\)
=>\(AH=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
=>\(AB=R\sqrt{3}\)
\(a,\) Ta có \(\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\dfrac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\\ =\dfrac{\sqrt{n-1}-\sqrt{n}}{n-1-n}=\sqrt{n}-\sqrt{n-1}\)
Thay vào A
\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\\ A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\\ A=\sqrt{n}-1\)
\(b,\) Ta có \(\dfrac{1}{\sqrt{n-1}-\sqrt{n}}=\dfrac{\sqrt{n-1}+\sqrt{n}}{\left(\sqrt{n-1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n-1}+\sqrt{n}}{n-1-n}=-\sqrt{n-1}-\sqrt{n}\)
Thay vào B
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\\ B=-1-\sqrt{2}-\left(-\sqrt{2}-\sqrt{3}\right)-...-\left(-\sqrt{24}-\sqrt{25}\right)\\ B=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{24}+\sqrt{25}\\ B=\sqrt{25}-1\)
\(a,\Leftrightarrow m-1>0\Leftrightarrow m>1\\ b,m=2\Leftrightarrow y=x+1\)
Bạn tự vẽ đi
\(c,\) PT hoành độ giao điểm: \(\left(m-1\right)x+2m-3=2x+1\)
Mà 2 đt cắt nhau tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow2m-3=1\\ \Leftrightarrow m=2\)
a:
pthđgđ là:
1/2x^2-x-2=0
=>x^2-2x-4=0
=>x^2-2x+1-5=0
=>(x-1)^2=5
=>x=căn 5+1 hoặc x=-căn 5+1
=>y=3+căn 5 hoặc y=3-căn 5
b: C(x;0); D(0;y)
=>vecto CD=(-x;y)
=>vecto DC=(x;-y)
vecto AB=(-2căn 5;-2căn 5)
Để ABCD là hbh thì vecto AB=vecto DC
=>x=-2căn 5 và y=2căn 5
=>C(-2căn5;0); D(0;2căn 5)
1: góc AHC+góc AKC=180độ
=>AHCK nội tiếp
2: góc AHK=góc ACK=góc ABC
3: AH^2=AI*AK
=>AH^2=2*AM*2NA
mà AH=AM+AN
nên (AM-AN)^2=0
=>AM=AN
=>2AM=2AN
=>AP=AK
=>A nằm chính giữa cung BC
=>A,O,H thẳng hàng
a: Áp dụng định lí Pytago vào ΔADC vuông tại D, ta được:
\(AC^2=AD^2+DC^2\)
\(\Leftrightarrow AC^2=8^2+15^2=289\)
hay AC=17cm
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DM là đường cao ứng với cạnh huyền AC, ta được:
\(DM\cdot AC=AD\cdot DC\)
\(\Leftrightarrow DM=\dfrac{120}{17}\left(cm\right)\)
a ) Theo định lý py-ta-go trong ΔADC, ta có :
AC^2 = AD^2 + CD^2
= 8^2 + 15^2
= 64 + 225
= 289
=> AC = 17 (cm)
b ) Ta có :
Xét tam giác ΔMDA và ΔDCA, có :
góc A chung
góc AMD = góc ADC = 90 độ
=> ΔMDA ∼ ΔDCA (G.G)
=> MD/CD = AD/AC
=> MD = CD.AD/AC
= 15.8/17
= 7,1 (cm)
1: Thay x=9 vào A, ta được:
\(A=\dfrac{9+3+4}{3-2}=16\)