K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2022

\(\Rightarrow\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}+\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}=0\)

\(\Leftrightarrow\dfrac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\dfrac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{2}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\dfrac{2}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Thứ lại nghiệm thấy thỏa mãn (do ban đầu ko tìm ĐKXĐ nên cần thử lại). Vậy \(x=-2\) là nghiệm duy nhất của pt

Câu 1: 

TXĐ: D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

1 tháng 11 2021

Mình cảm ơn ạ

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Lời giải:
Gọi $I(a,b)$ là tâm đường tròn

$(I)$ tiếp xúc với $(d)$ nên: \(R=d(I,(d))=\frac{|a-b+1|}{\sqrt{2}}(*)\)

Mặt khác: 

\(\overrightarrow{AB}=(6,-2)\)

\(H(9,4)\) là trung điểm $AB$. \(\overrightarrow{HI}=(a-9,b-4)\)

\(\overrightarrow{HI}\perp \overrightarrow{AB}\Rightarrow 6(a-9)-2(b-4)=0\)

\(\Leftrightarrow 3a-b=23\)

Thay vô $(*)$ thì $R=\frac{|24-2a|}{\sqrt{2}}$

Ta cũng có \(R=IA=\sqrt{(a-6)^2+(b-5)^2}=\sqrt{(a-6)^2+(3a-23-5)^2}\)

\(=\sqrt{10a^2-180a+820}\)

Vậy: \(\frac{|24-2a|}{\sqrt{2}}=\sqrt{10a^2-180a+820}\)

$\Leftrightarrow (24-2a)^2=2(10a^2-180a+820)$

$\Leftrightarrow 16a^2-264a+1064=0$

$\Leftrightarrow 2a^2-33a+133=0$

$\Leftrightarrow a=\frac{19}{2}$ hoặc $a=7$

Đến đây bạn tìm được tâm hình tròn, biết bán kính thì sẽ tìm được pt đường tròn.

 

 

a: \(\overrightarrow{AB}=\left(-3;-2\right)\)

\(\overrightarrow{AC}=\left(1;-4\right)\)

Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên A,B,C ko thẳng hàng

hay A,B,C lập thành 1 tam giác

b: Gọi M là trung điểm của BC

\(\Leftrightarrow\left\{{}\begin{matrix}x_M=\dfrac{2-\left(-2\right)}{2}=2\\y_M=\dfrac{-1-1}{2}=-1\end{matrix}\right.\)

Vậy: M(2;-1)

A(1;3)

\(AM=\sqrt{\left(2-1\right)^2+\left(-1-3\right)^2}=\sqrt{17}\)

 

15 tháng 9 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tui ms lớp 8....nhưng có hk mấy bài r....

Gv giảng bài cx khác dễ hiểu

13 tháng 12 2020

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

13 tháng 12 2020

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)