Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải cho x;y;z dương chứ nhỉ?
Áp dụng bất đẳng thức AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)
\(x^2y^2+x^2z^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế:
\(2\left(x^2y^2+y^2z^2+x^2z^2\right)\ge2\left(xy^2z+x^2yz+xyz^2\right)\)
\(\Rightarrow x^2y^2+y^2z^2+z^2x^2\ge xy^2z+x^2yz+xyz^2\)
Dấu "=" khi \(x=y=z\)
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh
\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)
\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)
Ta có \(xyz-2=x^2-2z\)
<=>\(z=\frac{x^2+2}{xy+2}\)là số nguyên dương
Nếu x=y thì z=1.Khi đó bộ số (t,t,1) với t là số nguyên dương thỏa mãn bài ra.
Nếu x<y thì z<1 không thỏa mãn
Nếu x>y thỉ \(x^2+2>xy+2\)
Vì zz là số nguyên dương nên x^2+2 chia hết xy+2=>x^2y+2y chia hết xy+2 =>2(x-y) chia hết xy+2
Do đó tồn tại k sao cho 2(x-y)=k(xy+2)
Nếu k>=2 vô lý
Nếu k=1 =>x=4,y=1,z=3