\(x:y:z=2,5:4:8,1\)Tính x,y,z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)

=>x=-12

y=-20

z=8

Vậy...

Các câu sau tương tự

17 tháng 9 2016

x : y : z = 3 : 4 : 5 

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thế vào đẳng thức , ta có : 

\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(5.25k^2-3.9k^2-2.16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(k^2.\left(125-27-32\right)=594\)

\(66k^2=594\)

\(k^2=9\)

\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)

\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)

5 tháng 8 2017

Ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)

Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)

17 tháng 9 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-31}=\frac{594}{67}\)

Bạn tự giải tiếp .

17 tháng 9 2016

hiểu rùi...thanksleuleu

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

6 tháng 8 2017

2 cách nhé các bạn

31 tháng 3 2020

1, \(\frac{x}{4}\) = \(\frac{y}{2}\) = \(\frac{x+y}{4+2}\) = \(\frac{6}{6}\) = 1

=> x = 4; y = 2

2, x : y : z = 6 : 7 : 8 => \(\frac{x}{6}\) = \(\frac{y}{7}\) = \(\frac{z}{8}\)

=> \(\frac{x}{6}\) = \(\frac{y}{7}\) = \(\frac{z}{8}\) = \(\frac{x+y+z}{6+7+8}\) = \(\frac{21}{21}\) = 1

=> x = 6; y = 7; z = 8

3, 4x = 5y => \(\frac{x}{\frac{1}{4}}\) = \(\frac{y}{\frac{1}{5}}\) = \(\frac{x-y}{\frac{1}{4}-\frac{1}{5}}\) = \(\frac{1}{\frac{1}{20}}\) = 20

=> x = 5; y = 4

27 tháng 10 2017

Giải:

Ta có:

\(x:y:z=\dfrac{2}{5}:\dfrac{3}{4}:\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{x}{\dfrac{2}{5}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{1}{3}}\)

\(\Leftrightarrow\dfrac{x}{\dfrac{24}{60}}=\dfrac{y}{\dfrac{45}{60}}=\dfrac{z}{\dfrac{20}{60}}\)

\(\Leftrightarrow\dfrac{x}{24}=\dfrac{y}{45}=\dfrac{z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{24}=\dfrac{y}{45}=\dfrac{z}{20}=\dfrac{x-z}{24-20}=\dfrac{-4,8}{4}=-\dfrac{6}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{24}=-\dfrac{6}{5}\\\dfrac{y}{45}=-\dfrac{6}{5}\\\dfrac{z}{20}=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{5}\\y=-54\\z=-24\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

27 tháng 10 2017

Ta có:
\\(x:y:z=\\dfrac{2}{5}:\\dfrac{3}{4}:\\dfrac{1}{3}\\)

\\(\\Rightarrow\\dfrac{x}{\\dfrac{2}{5}}=\\dfrac{y}{\\dfrac{3}{4}}=\\dfrac{z}{\\dfrac{1}{3}}\\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\\(\\dfrac{x}{\\dfrac{2}{5}}=\\dfrac{y}{\\dfrac{3}{4}}=\\dfrac{z}{\\dfrac{1}{3}}=\\dfrac{x-z}{\\dfrac{2}{5}-\\dfrac{1}{3}}=\\dfrac{-4,8}{\\dfrac{1}{15}}=-72\\\\ \\Rightarrow x=\\left(-72\\right).\\dfrac{2}{5}=-28,8\\\\ y=\\left(-72\\right).\\dfrac{3}{4}=-54\\\\ z=\\left(-72\\right).\\dfrac{1}{3}=-24\\\\ \\Rightarrow x=-28,8;y=-54;z=-24\\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{2}{5}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{1}{3}}=\dfrac{x-z}{\dfrac{2}{5}-\dfrac{1}{3}}=\dfrac{-4.8}{\dfrac{1}{15}}=-72\)

Do đó: x=-144/5; y=-54; z=-24