K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

\(\hept{\begin{cases}x+y+z>1\\8x+9y+10z=100\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z\ge12\\8x+9y+10z=100\end{cases}}\)

\(\Rightarrow y+2z=100-8\left(x+y+z\right)\le100-8\cdot12=4\)

Mặt khác \(y,z\ge1\)suy ra \(3\le y+2z\le4\)\(\Rightarrow y+2z\in\left\{3,4\right\}\)

  • Nếu \(y+2z=3\Leftrightarrow y=z=1\Rightarrow x\in\left\{\text{Ø}\right\}\)
  • Nếu \(y+2z=4\Leftrightarrow y=2;z=1\Rightarrow x=9\)
25 tháng 11 2015

100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)

mà x+y+z>11

=> 8x+8y+8z>88

=> y+2z<12=> z<6=>x+y<5(2)

tương tự:

9x+9y+9z<99

=> z-x<1

=> z<1+x(3)

để thoả mãn cả (1) (2) và (3) thì:

x=4,y=2,z=5

x=3,y=z=4

x=2,y=6,z=3

x=1,y=8,z=2

x=9,y=2,z=1

 

 

25 tháng 11 2015

ko cần giải đâu biết làm rồi mà

11 tháng 10 2016

Ta có:

\(8x+8y+8z< 8x+9y+10z\)

\(\Rightarrow x+y+z< \frac{100}{8}< 13\)

\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)

Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)

Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Nhân 2 vế của (1) với 8 ta đc:

\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).

Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)

Với \(z=1\Rightarrow y=2;x=9\)

Vậy...

11 tháng 10 2016

Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12

100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra 
4≥y+2z≥3
Tức là 
y+2z ∈ {3;4}
Theo đề bài thì 
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra 
y+2z=4 Hay y=2; z=1
Thế ngược lại vào 
8x+9y+10z=100 tìm được x=9
Vậy  (x,y,z)=(9,2,1)

24 tháng 2 2016

cô-si nhé bạn cần mk làm ko 

24 tháng 2 2016

ta có \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)

   \(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)

 do đó xyz(x+y)(y+z)(z+x)\(\le\frac{1}{27}\cdot\frac{8}{27}=\frac{8}{729}\)

 ==>GTLN của biểu thức trên là \(\frac{8}{729}\)

     

31 tháng 7 2019

Em thử làm, sai thì thôi nha!

Ta có: \(x^3+y^3+z^3+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Áp dụng BĐT AM-GM và BĐT Nesbitt ta có:

\(VT\ge3\sqrt[3]{\left(xyz\right)^3}+2.\frac{3}{2}\ge3+3=6\)

Đẳng thức xảy ra khi x = y = z = 1.

Vậy.....

Is it right???

29 tháng 8 2018

bình phương cả 2 vế ta được

\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2x^2+2y^2+2z^2\)

\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\) (vì x^2 +y^2 +z^2 =1)

Áp dụng BĐT cô si cho 2 số

\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\left(1\right)\)

\(\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\left(2\right)\)

\(\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\left(3\right)\)

(1)+(2)+(3)

=> \(2\left(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\right)\ge2\left(x^2+y^2+z^2\right)\)

<=> \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge1\)

Cộng 2 vào cả 2 vế ta đc

\(A^2\ge3\)

<=> \(\ge\sqrt{3}\)

Vậy Min A= \(\sqrt{3}\) khi x=y=z =\(\dfrac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Lời giải khác:

Đặt \((\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y})\mapsto (a,b,c)\)

\(\Rightarrow (x^2,y^2,z^2)=(ac,ab,bc)\)

Bài toán trở thành tìm min của $A=a+b+c$ biết $ab+bc+ac=1$ và $a,b,c>0$

Theo hệ quả quen thuộc của BĐT AM-GM:
\(A^2=(a+b+c)^2\geq 3(ab+bc+ac)=3\)

\(\Rightarrow A\geq \sqrt{3}\)

Vậy \(A_{\min}=\sqrt{3}\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)