K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Đặt  z -60 = t 

\(x+y+z=100\Rightarrow x+y+t=40;\)

\(\Leftrightarrow x+y+t\ge3\sqrt[3]{xyt}\Leftrightarrow xyt\le\frac{\left(x+y+t\right)^3}{3^3}=\left(\frac{40}{3}\right)^3\)

\(Max\left(xyt\right)=\left(\frac{40}{3}\right)^3\) khi x =y =t =40/3  => z =60+t =60+40/3=220/3

=>\(xyz\le\frac{40}{3}.\frac{40}{3}.\frac{220}{3}=\frac{352000}{27}\) khi x =y =40/3 ; z =220/3

6 tháng 6 2023

Từ giả thiết, x+y=100-z\(\leq\)40

Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)

Dấu "=" xảy ra khi x=y=20 và z=60

12 tháng 3 2018

1)
đặt : y = 60 + a => x = 40 - a
Ta có
√ [ 2/ 3( 60 + a )( 40 -a ) ] = √ ( 40 + 2a/ 3)( 40 - a )

√ ( 40 + 2a/ 3)( 40 - a ) =< ( 40 + 2a / 3 + 40 -a ) /2 ( BĐT cô si cho 2 so duong)

<=> √ ( 40 + 2a/ 3)( 40 - a ) =< ( 80 - a/ 3 )/2 =< 80 / 2 = 40

dấu = xảy ra <=> 40 + 2a / 3 = 40 -a và a / 3 = 0
<=> a = 0
<=> x = 40 ; y = 60

b)đặt : z = 60 + a
=> x = 40 -a - y
y = 40 -a - x
tương tự , áp dụng cô si cho 3 số

1/3( 60 + a ) ; ( 40 -a -y ) và ( 40 - a - x )

bài 2

Ta có : góc B = 60 độ
=> C = 30 độ
=> AB = BC / 2 ( đây là kiến thức 8 )

=> AC = √ ( BC^2 - BC^2 / 4 ) = ( BC√ 3 ) /2

=> AC / AB = ( BC√ 3 ) /2 : BC / 2 = √ 3

Dễ dàng nhận thấy dấu "=" xảy ra <=> z =60, x = y = 20

=> z = 3x = 3y

Có x+y+z = 100 => x+y = 100 - z

Xét z + 3x + 3y \(\ge3\sqrt[3]{z.3x.3y}\)

=> 100 + 2(x+y) \(\ge3\sqrt[3]{9xyz}\)

=> 100 + 2(100-z) \(\ge3\sqrt[3]{9xyz}\)

Ta có: z \(\ge60\) => \(-z\le-60\) => 100 + 2(100-z) \(\le100+2\left(100-60\right)\)

=> \(280\text{ }\) \(\ge3\sqrt[3]{9xyz}\)

=> xyz \(\le24000\)

Dấu "=" xảy ra <=> z =60, x = y = 20

có cái đoạn 280 bn sửa giúp mik thành 180 nhé

10 tháng 12 2017

Nguyễn NamAkai HarumaRibi Nkok Ngoklê thị hương giangTrần Ngọc BíchNguyễn Phương TrâmĐạt Trần TiếnPhạm Hoàng GiangNgân HảiChessEvanDikĐoàn Đức HiếuNguyễn Huy TúAce LegonaHung nguyen,...

10 tháng 12 2017

x,y,z có là số nguyên không?

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

9 tháng 10 2017

ý em là bài này hả ?

Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...

bài làm

ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D) 
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có 
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3 
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3 
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được 
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz 
thay x+y+z=3 ta được: 
9xyz >=12(xy+yz+zx)-27 
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^... 
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3 
27xyz<=(x+y+z)^3>> xyz<=1 
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1 

9 tháng 10 2017

đây có đúng là thầy không vậy