Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si ta có:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)
Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)
Công vế với vế của 3 BĐT trên ta đươc:
\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)
Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)
:))
1.
\(y=\sqrt[4]{sinx}-\sqrt{cosx}\le\sqrt[4]{sinx}\le1\)
\(y_{max}=1\) khi \(\left\{{}\begin{matrix}sinx=1\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)
\(y=\sqrt[4]{sinx}-\sqrt{cosx}\ge-\sqrt{cosx}\ge-1\)
\(y_{min}=-1\) khi \(x=k2\pi\)
2.
\(y_{max}\) ko tồn tại
\(y=\frac{1}{cos^4x}+\frac{\sqrt{2}^2}{1-cos^4x}\ge\frac{\left(1+\sqrt{2}\right)^2}{cos^4x+1-cos^4x}=3+2\sqrt{2}\)
\(y_{min}=3+2\sqrt{2}\) khi \(cos^4x=\sqrt{2}-1\)
Áp dụng BĐT Bunhiacôpxki:
\(1=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\le\left(x+y+z\right)\left(x+y+z\right)\)
\(\Rightarrow x+y+z\ge1\)
\(T=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{1}{3}\)
TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)
và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)
Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)
TH2: Nếu các số đều khác 0
Từ giả thiết => tồn tại tam giác ABC nhọn sao cho
\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)
\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)
\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)
Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\) (1)
Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)
\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)
\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)
\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)
\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\) (2)
bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\) và 2 bđt tương tự
Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)
\(\Rightarrow P\ge1\)
Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\) hoặc \(x^2=y^2=z^2=\frac{1}{2}\)
Vậy GTNN của P là 1
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
Chú ý rằng nếu \(x+y+z=\frac{\pi}{2}\) thì \(tanx.tany+tany.tanz+tanx.tanz=1\)
Nên ta có:
\(y\le\sqrt{3\left(3+tanx.tany+tany.tanz+tanx.tanz\right)}=3\sqrt{4}=6\)
\(y_{max}=6\)