K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2019

\(P=\frac{x}{x+3}+\frac{y}{y+3}+\frac{z}{z+3}=1-\frac{3}{x+3}+1-\frac{3}{y+3}+1-\frac{3}{z+3}\)

\(P=3-3\left(\frac{1}{x+3}+\frac{1}{y+3}+\frac{1}{z+3}\right)\le3-3.\frac{9}{x+y+z+9}=3-\frac{27}{12}=\frac{3}{4}\)

\(\Rightarrow P_{max}=\frac{3}{4}\) khi \(x=y=z=1\)

16 tháng 8 2019

\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)

tương tự

\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);

\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);

cộng vế với vế => đpcm

Dấu "=" xảy ra <=> x=y=z=1

16 tháng 8 2019

Cô si

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)

Thật vậy, áp dụng BĐT AM-GM:

\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)

\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)

Nhân theo vế ta có BĐT $(*)$ luôn đúng

Do đó ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

7 tháng 3 2021

toán lớp mấy v 

1hay 23456789

17 tháng 5 2016

Giải:

Ta có: x, y, z >0

Áp dụng BĐT Cô si ta có:

\(\left(x+y\right)\ge2\sqrt{xy}\) và \(\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{1}{xy}}\)

=> \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)

<=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)               (*)

Áp dụng (*) ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}=\frac{1}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\)        (1)

\(\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}=\frac{1}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)        (2)

\(\frac{1}{x+y+2z}=\frac{1}{x+z+y+z}=\frac{1}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\)        (3)

Cộng 2 vế của (1), (2), (3) ta có

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) (đpcm)
 

4 tháng 11 2016

cảm ơn bạn nhiều

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

16 tháng 1 2016

Nhanh to cho card 20

 

NV
14 tháng 5 2020

\(H=\sum\frac{y}{x^2+1+2y+2}\le\sum\frac{y}{2x+2y+2}=\frac{1}{2}\sum\frac{y}{x+y+1}\)

Ta sẽ chứng minh \(H\le\frac{1}{2}\) hay \(\frac{y}{x+y+1}+\frac{z}{y+z+1}+\frac{x}{z+x+1}\le1\)

\(\Leftrightarrow\frac{x+1}{x+y+1}+\frac{y+1}{y+z+1}+\frac{z+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x+y+1\right)}+\frac{\left(y+1\right)^2}{\left(y+1\right)\left(y+z+1\right)}+\frac{\left(z+1\right)^2}{\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\left(x+1\right)\left(x+y+1\right)+\left(y+1\right)\left(y+z+1\right)+\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{x^2+y^2+z^2+xy+yz+zx+3x+3y+3z+3}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x^2+y^2+z^2\right)+xy+yz+zx+3x+3y+3z+3+\frac{1}{2}\left(x^2+y^2+z^2\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+3+\frac{3}{2}}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{2}}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z+3\right)^2}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)