Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
Luôn có \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-x\right)^2\ge0\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge xy+yz+xz\ge-1\)
\(P_{min}=-1\)dấu "=" sảy ra khi (x,y,z) là hoán vị của 3 phần tử (0,0,-1)
Ta có:
\(xy+yz+zx=-1\)
\(\Leftrightarrow2\left(xy+yz+zx\right)=-2\)
\(\Leftrightarrow2\left(xy+yz+zx\right)+x^2+y^2+z^2=-2+x^2+y^2+z^2\)
\(\Leftrightarrow P=x^2+y^2+z^2=\left(x+y+z\right)^2+2\ge2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-1\end{cases}}\)
Chỉ ra 1 bộ số thỏa mãn cái đấy nhé là: \(\hept{\begin{cases}x=0\\y=1\\z=-1\end{cases}}\)
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Áp dụng bđt Svacsơ ta có :
\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)
\(\Rightarrow x+y+z\ge\sqrt{3}\)
\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)
\(A=3x^2+12y^2+2x^2+18z^2+4y^2+9z^2\)
\(\Rightarrow A\ge2\sqrt{3x^2.12y^2}+2\sqrt{2x^2.18z^2}+2\sqrt{4y^2.9z^2}\)
\(\Rightarrow A\ge12xy+12xz+12yz=12\left(xy+xz+yz\right)=12\)
\(\Rightarrow A_{min}=12\) khi \(\left[{}\begin{matrix}x=2y=3z=1\\x=2y=3z=-1\end{matrix}\right.\)