K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

\(100x+10y+z⋮21\)

\(\Rightarrow21\left(5x+z\right)-\left(100x+10y+z\right)⋮21\)

\(\Rightarrow5x-10y+20z⋮21\)

\(\Rightarrow5\left(x-2y+4z\right)⋮21\)

Mà 5 và 21 là 2 số nguyên tố cùng nhau

\(\Rightarrow x-2y+4z⋮21\)

4 tháng 7 2019

\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+1+4y+1+4z+1\right)=21.\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\left(đpcm\right)\)

Dấu "=" xra :

\(\frac{4x+1}{1}=\frac{4y+1}{1}=\frac{4z+1}{1}\Rightarrow x=y=z=\frac{1}{3}\)

12 tháng 8 2017

đề ẩu thế.... Có lẽ là căn 21

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\)

\(\le\left(1+1+1\right)\left(4\left(x+y+z\right)+3\right)\)

\(=3\cdot\left(4\cdot1+3\right)=21\)

\(\Rightarrow VT^2\le21\Rightarrow VT\le\sqrt{21}\)

Khi \(x=y=z=\frac{1}{3}>-\frac{1}{4}\)

NV
8 tháng 1 2023

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

NV
8 tháng 1 2023

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy

 

23 tháng 12 2017

Áp dụng bất đẳng thức bunhiacopxki ta có :

\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1+1+1\right)\left(4x+1+4y+1+4z+1\right)\)

\(=3.\left[4\left(x+y+z\right)+3\right]=3.7=21\)

\(\Rightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

1 tháng 10 2017

\(\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}{\frac{1}{x+y+x}}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=1\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

B=\(\left(x+y\right)\left(y+z\right)\left(z+x\right).M=0\)

3 tháng 10 2017

M ở đâu ra thế bạn

22 tháng 9 2023

điểm rơi xấu quá: x=\(\dfrac{\sqrt[3]{9}}{2}\); y=\(\sqrt[3]{9}\), z =\(2\sqrt[3]{9}\) (4x=2y=z)