K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

Vì x, y, z là số tự nhiên nên không mất tính tổng quát ta giả sử:

\(x\ge y\ge z\ge0\)

\(\Rightarrow x=2017-y-z\ge2017-0-0=2017\)

Vậy GTLN là 2017 đạt được khi \(\hept{\begin{cases}x=2017\\y=z=0\end{cases}}\) và các hoán vị của nó

17 tháng 6 2017

Ở trên a ghi nhầm dấu \(\le\) thành dấu \(\ge\) e sửa hộ a nhé

15 tháng 6 2017

Tìm min hay tìm max thế? Max thì làm gì có.

15 tháng 6 2017

nhưng đề bảo thế

4 tháng 12 2021

sai đề

NV
4 tháng 12 2021

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

7 tháng 1 2018

Xét :A = x^2017 + x^2017 + 1 + 1 + 1 +..... + 1 ( 2015 số 1)

Áp dụng bđt cosi ta có : 

A >= 2017\(\sqrt[2017]{x^{2017}.x^{2017}.1.1.....1}\) = 2017x^2

=> x^2 < = A/2017 = 2x^2017+2015/2017

Tương tự : y^2 < = 2y^2017+2015/2017

z^2 < = 2z^2017+2015/2017

=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+3.2015/2017 = 2.3+3.2015/2017 = 3

Dấu "=" xảy ra <=> x=y=z=1

Vậy Max của x^2+y^2+z^2 = 3 <=> x=y=z=1

Tk mk nha

7 tháng 1 2018

Bài này lm rồi mà, đăng lên lmj 

11 tháng 5 2018

áp dụng bđt cosi ta có:

\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)

tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)

dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)

\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)

\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1

khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

vậy max A là 1 khi x=y=z=1

11 tháng 5 2018

Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)

Dấu = xra khi a=b=c và abc=1 =>a=b=c=1

18 tháng 5 2016

tích trước trả lời sau

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

28 tháng 8 2017

Ta c/m BĐT mạnh hơn \(\frac{1}{x^5-x^2+3xy+6}+\frac{1}{y^5-y^2+3yz+6}+\frac{1}{z^5-z^2+3zx+6}\le\frac{1}{3}\)

Áp dụng BĐT AM-GM ta có: 

\(x^5+x+1\ge3x^2\)và \(2x^2+2\ge4x\)

\(\Rightarrow x^5-x^2+6\ge3x+3\)

\(\Rightarrow\frac{1}{x^5-x^2+3xy+6}\le\frac{1}{3(x+xy+1)}\)

\(P\le\frac{1}{3(x+xy+1)}+\frac{1}{3(y+yz+1)}+\frac{1}{3(z+zx+1)}=\frac{1}{3}\)