Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\({-1\over 2}x^2×y^2 - x^2×y^2 +{2\over 3} x^2×y^2 \)
=\(({ -1\over 2}-1+{ 2\over 3})x^2×y^2\)
=\({-5 \over 6}x^2×y^2\)
b)\({1 \over 2}a^3×b^2 +{4 \over 3}3ab^2 × {1 \over 2}a^2\)
=\({1 \over 2}a^3×b^2 +({4 \over 3}× {1 \over 2})3b^2 (a×a^2) \)
=\({1 \over 2}a^3×b^2 +{2 \over 3}3a^3b^2\)
=\(({1 \over 2} +{2 \over 3}3)a^3b^2\)
=\({5 \over 2}a^3b^2\)
c)
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
Thay x = 1 và y = -2 ta có
12 -2.1.(-2) - (-2)2 + 4.1 .(-2)
= 1 - 2.1. (-2) - 4 + 4.1.(-2)
= 1 - (-4) - 4 + (-8)
= -7
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{18}\)
\(=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
c: \(C=-\dfrac{3}{4}xy^2-2x^2y-\dfrac{9}{2}xy\)
\(=\dfrac{-3}{4}\cdot\dfrac{1}{2}\cdot\left(-1\right)^2-2\cdot\dfrac{1}{4}\cdot\left(-1\right)-\dfrac{9}{2}\cdot\dfrac{1}{2}\cdot\left(-1\right)\)
\(=\dfrac{-3}{8}+\dfrac{1}{2}+\dfrac{9}{4}=\dfrac{19}{8}\)
(x+y)2=(x+y)1(x+y)2=(x+y)1
⇒(x+y)2−(x+y)1=0⇒(x+y)2−(x+y)1=0
⇒(x+y)[(x+y)−1]=0⇒(x+y)[(x+y)−1]=0
⇒[x=−yx+y=1
\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)
\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)
\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)
\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)
\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)
\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)
Thay x = -1 ; y = 1/2 vào N ta được :
\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)
\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)
\(N=\frac{-20}{3}+1+\frac{5}{2}\)
\(N=\frac{-19}{6}\)
Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
\(A=x^3+3xy\left(x+y\right)+y^3-xy\left(x+y\right)+x^2+y^2+xy+2\)
\(A=\left(x+y\right)^3-xy.\left(-1\right)+x^2+y^2+xy+2\)
\(A=\left(-1\right)^3+x^2+y^2+2xy+2\)
\(A=\left(x+y\right)^2+1\)
\(A=\left(-1\right)^2+1=2\)
nhân vào làm mất ngoặc nhưng không hay để nguyên, không có dấu trừ nên không đẹp. Vẫn làm theo yêu cầu!
= x3 + x2y / 2 + xy + x2 y2 + xy3 /2+ y 3