Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{y+x+z+4}{x+4+y+z}=1\)
từ \(\frac{y+x}{x+4}=1\Rightarrow y+x=x+4\Rightarrow y=4\)
a - b = 2(a+b) = 2a + 2b
-a = 3b
a-b = -3b- b = -4b = \(\frac{a}{b}\)=\(\frac{-3b}{b}\)= - 3
b= 3/4
a= -3b= -9/4
Điều kiện: \(x\ne-13\)
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Rightarrow\frac{37-x}{3}=\frac{x+13}{7}=\frac{\left(37-x\right)+\left(x+13\right)}{3+7}=\frac{50}{10}=5\)
\(\Rightarrow37-x=3.5\)
\(\Rightarrow x=37-15=22\)
Thử lại, thay x = 22 vào ta thấy phương trình đúng
Đơn giản hơn được không bạn/ Ví dụ như là nhân chéo í
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101
=(2^101 -1)/2^100 - 100/2^101
=> A = (2^101 -1)/2^99 - 100/2^100
Bạn ơi khó hiểu quá bạn giải chi tiết hơn giúp mình nhé mình sẽ k cho bạn 2 cái nhé
a)\(-\left(\frac{2}{5}+x\right)=\frac{2}{3}-\frac{11}{12}\)
\(-\left(\frac{2}{5}+x\right)=\frac{-1}{4}\)
\(\frac{-2}{5}-x=\frac{-1}{4}\)
\(-x=\frac{-1}{4}+\frac{2}{5}\)
\(-x=\frac{3}{20}\)
\(x=\frac{-3}{20}\)
Vậy...
b)\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)
\(\frac{1}{4}:x=\frac{-7}{20}\)
\(x=\frac{1}{4}:\left(\frac{-7}{20}\right)\)
\(x=\frac{-5}{7}\)
Vậy...
tk mk nhoaa bn
4)
theo câu 2,ta có:\(\Delta ABM=\Delta CDM\left(g.cg\right)\)
\(\Rightarrow AB=CD\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD=IB=BA=CK=KD\)
xét \(\Delta\) AIM và \(\Delta\)CKM có:
AI=CK(cmt)
AM=MC(gt)
góc IAM=góc MCK=\(90^o\)
=>\(\Delta AIM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{IMA}=\widehat{CMK}\) => M là giao điểm của IK và AC
=> I,M,K thẳng hàng
\(xy^2+\frac{2}{3}y^2x-\frac{3}{4}xy^2=\left(xy^2-\frac{3}{4}xy^2\right)+\frac{2}{3}y^2x=\frac{1}{4}xy^2+\frac{2}{3}y^2x\)
xy^2+2/3y^2x-3/4xy^2
=(1-3/4)xy^2+2/3y^2x
=1/4xy^2+2/3y^2x