\(xy^2 -2y+3x^2=0 và x^2y+2x+y^2 =0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

@Hắc Hường

5 tháng 9 2020

\(\hept{\begin{cases}xy^2-3xy+3x-2y+2=0\\x^2+y^2+xy-7x-6y+14=0\end{cases}}\)

5 tháng 9 2020

HPT \(\Leftrightarrow\hept{\begin{cases}x\left(y^2-4y+4\right)+xy-x-2y+2=0\\\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+xy-2x-2y+4-x+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(y-2\right)^2+\left(x-2\right)\left(y-2\right)+\left(x-2\right)=0\\\left(x-2\right)^2+\left(y-2\right)^2+\left(x-2\right)\left(y-2\right)-\left(x-2\right)=0\end{cases}}\)

Đặt a = x - 2 ; b = y - 2 ta có :

\(\hept{\begin{cases}\left(a+2\right)b^2+ab+a=0\\a^2+b^2+ab-a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(b^2+b+1\right)=-2b^2\\a=a^2+b^2+ab\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{-2b^2}{b^2+b+1}\le0\forall b\\a=a^2+b^2+ab\ge0\forall ab\end{cases}}\)

\(\Rightarrow a=0\Rightarrow b=0\Rightarrow x=y=2\left(TM\right)\)

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2